【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.點D在AB邊上,點E是BC邊上一點(不與點B、C重合),且DA=DE,則AD的取值范圍是

【答案】2≤AD<3
【解析】解:以D為圓心,AD的長為半徑畫圓
①如圖1,當圓與BC相切時,DE⊥BC時,
∵∠ABC=30°,
∴DE= BD,
∵AB=6,
∴AD=2;
②如圖2,當圓與BC相交時,若交點為B或C,則AD= AB=3,
∴AD的取值范圍是2≤AD<3.

【考點精析】本題主要考查了含30度角的直角三角形和直線與圓的三種位置關(guān)系的相關(guān)知識點,需要掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;直線與圓有三種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y=﹣ 的圖像和一次函數(shù)y=kx﹣1的圖像都經(jīng)過點P(m,﹣3m).
(1)求點P的坐標和這個一次函數(shù)的表達式;
(2)若這兩個圖像的另一個交點Q縱坐標為2,O為坐標原點,求△POQ的面積;
(3)若點M(a,y1)和點N(a+1,y2)都在這個反比例函數(shù)的圖像上,比較y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,拋物線經(jīng)過

A(-1,0)、B(0,3)兩點,與軸交于另一點C,頂點為D.

(1)求該拋物線的解析式及點C、D的坐標;

(2)經(jīng)過點B、D兩點的直線與軸交于點E,若點F是拋物線上一點,以A、B、E、F為頂點的四邊形是平行四邊形,求點F的坐標;

(3)如圖(2)P(2,3)是拋物線上的點,Q是直線AP上方的拋物線上一動點,求△APQ的最大面積和此時Q點的坐標.

圖(1) 圖(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在線段AB上,點M、N分別是AC、BC的中點.

(1)若AC=8cm,CB=6cm,求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=a,其它條件不變,你能猜想MN的長度嗎?寫出你的結(jié)論并說明理由;
(3)若C為直線AB上線段AB之外的任一點,且AC=m,CB=n,則線段MN的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y3x2向左平移1個單位,再向上平移2個單位,所得的新拋物線的解析式為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC于D點,E、F分別為DB、DC的中點,則圖中共有全等三角形對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)所示,∠AOB、∠COD都是直角.

(1)試猜想∠AOD與∠COB在數(shù)量上是相等,互余,還是互補的關(guān)系.請你用推理的方法說明你的猜想是合理的.
(2)當∠COD繞著點O旋轉(zhuǎn)到圖(2)所示位置時,你在(1)中的猜想還成立嗎?請你證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.

根據(jù)以上信息解答下列問題:

(1)這次抽樣調(diào)查的樣本容量是 ;

(2)通過“電視”了解新聞的人數(shù)占被調(diào)查人數(shù)的百分比為 ;扇形統(tǒng)計圖中, “手機上網(wǎng)”所對應的圓心角的度數(shù)是 ;

(3)請補全條形統(tǒng)計圖;

(4)若該市約有70萬人,請你估計其中將“電腦和手機上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:-3a(4b-1)=_________

查看答案和解析>>

同步練習冊答案