如圖1,在矩形中,動點從點出發(fā),沿方向運動至點處停止.設(shè)點運動的路程為,的面積為,如果關(guān)于的函數(shù)圖象如圖2所示,則當(dāng)時,點應(yīng)運動到
A.B.C.D.
C

試題分析:由圖可得當(dāng)點R運動到PQ上時,△MNR的面積y達(dá)到最大,且保持一段時間不變;到Q點以后,面積y開始減;根據(jù)這個特征即可求得結(jié)果.
解:當(dāng)點R運動到PQ上時,△MNR的面積y達(dá)到最大,且保持一段時間不變;
到Q點以后,面積y開始減;
故當(dāng)x=9時,點R應(yīng)運動到Q處.
故選C.
點評:動點問題的函數(shù)圖象是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某個體戶購進(jìn)一批時令水果,20天銷售完畢.他將本次銷售情況進(jìn)行了跟蹤記錄,根據(jù)所記錄的數(shù)據(jù)可繪制的函數(shù)圖象,其中日銷售量y(千克)與銷售時間x(天)之間的函數(shù)關(guān)系如圖甲所示,銷售單價p(元/千克)與銷售時間x(天)之間的函數(shù)關(guān)系如圖乙所示.

(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)分別求出第10天和第15天的銷售金額;
(3)若日銷售量不低于24千克的時間段為“最佳銷售期”,則此次銷售過程中“最佳銷售期”共有多少天?在此期間銷售單價最高為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

直角坐標(biāo)系中,已知點A(-1,2)、點B(5,4),軸上一點P()滿足PA+PB最短,則          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

甲、乙兩名大學(xué)生去距學(xué)校36千米的某鄉(xiāng)鎮(zhèn)進(jìn)行社會調(diào)查.他們從學(xué)校出發(fā),騎電動車行駛20分鐘時發(fā)現(xiàn)忘帶相機(jī),甲下車前往,乙騎電動車按原路返回.乙取相機(jī)后(在學(xué)校取相機(jī)所用時間忽略不計),騎電動車追甲.在距鄉(xiāng)鎮(zhèn)13.5千米處追上甲后同車前往鄉(xiāng)鎮(zhèn).乙電動車的速度始終不變.設(shè)甲與學(xué)校相距y(千米),乙與學(xué)校相離y(千米),甲離開學(xué)校的時間為t(分鐘).y、y與x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問題:
(1)電動車的速度為   千米/分鐘;
(2)甲步行所用的時間為   分;
(3)求乙返回到學(xué)校時,甲與學(xué)校相距多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若反比例函數(shù)的圖象過點(﹣2,1),則一次函數(shù)y=kx﹣k的圖象過
A.第一、二、四象限B.第一、三、四象限
C.第二、三、四象限D.第一、二、三象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在以點O為原點的直角坐標(biāo)系中,一次函數(shù)的圖象與x軸交于A、與y軸交于點B,點C在直線AB上,且OC=AB,反比例函數(shù)的圖象經(jīng)過點C,則所有可能的k值為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,下圖是汽車行駛速度(千米/時) 和時間(分)的關(guān)系圖,下列說法其中正確的個數(shù)為(   )

(1)汽車行駛時間為40分鐘;
(2)AB表示汽車勻速行駛;
(3)第40分鐘時,汽車停下來了 ;
(4)在第30分鐘時,汽車的速度是90千米/時.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知點A是函數(shù)y=x與y=的圖象在第一象限內(nèi)的交點,點B在x軸負(fù)半軸上,且OA=OB,則△AOB的面積為(     )
A.2B.C.2D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線與雙曲線相交于A、B兩點,且當(dāng)x>1時,y1>y2;當(dāng)0<x<1時,y1<y2

(1)求b的值及A、B兩點的坐標(biāo);
(2)若在上有一點C到y(tǒng)軸的距離為3,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案