【題目】如圖,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點P從點A開始沿AB邊向點B以1 cm/s的速度移動,同時點Q從點B開始沿BC向點C以2cm/s的速度移動.當一個點到達終點時另一點也隨之停止運動,運動時間為x秒(x>0).
(1)求幾秒后,PQ的長度等于5 cm.
(2)運動過程中,△PQB的面積能否等于8 cm2?并說明理由.
【答案】(1)2秒后PQ的長度等于5 cm;(2)△PQB的面積不能等于8 cm2.
【解析】
(1)根據(jù)PQ=5,利用勾股定理BP2+BQ2=PQ2,求出即可;
(2)通過判定得到的方程的根的判別式即可判定能否達到8cm2.
解:(1)根據(jù)題意,得BP=(5-x),BQ=2x.
當PQ=5時,在Rt△PBQ中,BP2+BQ2=PQ2,
∴(5-x)2+(2x)2=52,
5x2-10x=0,
5x(x-2)=0,
x1=0(舍去),x2=2,
答:2秒后PQ的長度等于5 cm.
(2)設經(jīng)過x秒以后,△PBQ面積為8,
×(5-x)×2x=8.
整理得x2-5x+8=0,
Δ=25-32=-7<0,
∴△PQB的面積不能等于8 cm2.
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學舉辦“網(wǎng)絡安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據(jù)圖示計算出a、b、c的值;
(2)結合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個隊的決賽成績較好?
(3)計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.
(1)求拋物線的函數(shù)表達式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數(shù)表達式,并求出m為何值時,S取得最大值;
②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形OABC在平面直角坐標系中的位置如圖所示,已知,點A在x軸上,點C在y軸上,P是對角線OB上一動點(不與原點重合),連接PC,過點P作,交x軸于點D.下列結論:①;②當點D運動到OA的中點處時,;③在運動過程中,是一個定值;④當△ODP為等腰三角形時,點D的坐標為.其中正確結論的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學“我最喜愛的體育項目”進行了一次調查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:
(1)該班共有_____名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應的圓心角度數(shù)為_____;
(4)學校將舉辦體育節(jié),該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是中國古代數(shù)學專著,在數(shù)學上有其獨到的成就,不僅最早提到了分數(shù)問題,也首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價各幾何?譯文為:現(xiàn)有若干人合伙出錢買雞,如果每人出9文錢,就會多11文錢;如果每人出6文錢,又會缺16文錢.問買雞的人數(shù)、雞的價格各是多少?請解答上述問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。
(1)如圖1,若△ABC為直角三角形,求的值;
(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;
(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變
C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com