【題目】如圖,在 RtABC 中,∠C=90°,AC=8cm,BC=6cm,M AC上,且AM=6cm,過點 A( BC AC 同側)作射線 ANAC,若動點 P 從點 A 出發(fā),沿射線 AN 勻速運動,運動速度為 1cm/s,設點 P 運動時間為 t 秒.

(1)經(jīng)過 秒時,RtAMP 是等腰直角三角形?

(2)經(jīng)過幾秒時,PM⊥MB?

(3)經(jīng)過幾秒時,PM⊥AB?

(4)△BMP 是等腰三角形時,直接寫出 t 的所有值.

【答案】(1)6;(2)2;(3)8;(4)2.

【解析】

(1)得出腰時AM=AP,即可得出答案;

(2)根據(jù)垂直的定義和同角的余角相等得到∠CBM=∠AMP,證明△CBM≌△AMP,根據(jù)全等三角形的性質(zhì)得到 AP=CM=2,根據(jù)題意得到答案;

(3)證明△APM≌△CAB,根據(jù)全等三角形的性質(zhì)得到 AP=CA=8,根據(jù)題意得到答案;

(4) MB=MP PB=PM 兩種情況,根據(jù)全等三角形的性質(zhì),勾股定理計算即可.

(1) Rt△AMP 是等腰直角三角形時,AP=AM=6cm,

∴t=6÷1=6(s),

故答案為:6;

(2) PM⊥MB 時,∠BMP=90°,

∴∠BMC+∠AMP=90°,又∠BMC+∠CBM=90°,

∴∠CBM=∠AMP,

△CBM △AMP 中,

∴△CBM≌△AMP(ASA),

∴AP=CM=2,

∴t=2,即經(jīng)過 2 秒時,PM⊥MB;

(3) PM⊥AB 時,如圖1,∠PHA=90°,

∴∠HPA+∠HAP=90°,又∠HAP+∠CAB=90°,

∴∠APM=∠CAB,

△APM △CAB 中,

∴△APM≌△CAB(ASA),

∴AP=CA=8,

∴t=8,

經(jīng)過 8 秒時,PM⊥AB;

(4)根據(jù)勾股定理得,BM=,BP 的最小值為 8,

<8,

∴BM≠BP,

MB=MP 時,

Rt△BCM Rt△MAP 中,

,

∴Rt△BCM≌Rt△MAP(HL),

∴AP=CM=2, t=2,

PB=PM 時,如圖2,BF⊥AN F, 則四邊形 BCAF 為矩形,

∴BF=CA=8,AF=BC=6,

∴PF=6﹣t,

由勾股定理得,BP2=PF2+BF2,MP2=AM2+AP2,

∴PF2+BF2=AM2+AP2,即(6﹣t)2+82=62+t2, 解得,t=,

△BMP 是等腰三角形時,t=2 .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】 我們定義:如圖1、圖2、圖3,在ABC中,把AB繞點A順時針旋轉αα180°)得到AB,把AC繞點A逆時針旋轉β得到AC,連接BC,當α+β180°時,我們稱AB'CABC旋補三角形,ABCB'C上的中線AD叫做ABC旋補中線,點A叫做旋補中心.圖1、圖2、圖3中的ABC均是ABC旋補三角形

1)①如圖2,當ABC為等邊三角形時,旋補中線ADBC的數(shù)量關系為:AD   BC;

②如圖3,當∠BAC90°,BC8時,則旋補中線AD長為   

2)在圖1中,當ABC為任意三角形時,猜想旋補中線ADBC的數(shù)量關系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫作格點.ABC的三個頂點A,B,C都在格點上,將ABC繞點A按順時針方向旋轉90°得到ABC

1)在正方形網(wǎng)格中,畫出AB'C;

2)畫出ABC向左平移4格后的ABC;

3)計算線段AB在變換到AB的過程中掃過區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P為等邊ABC內(nèi)的一點,PA=10,PB=6,PC=8,將ABP繞點B順時針旋轉60°到CBP′位置.

(1)判斷BPP′的形狀,并說明理由;

(2)求BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班抽取6名同學參加體能測試,成績?nèi)缦拢?5,95,85,80,80,85.下列表述錯誤是( )
A.眾數(shù)是85
B.平均數(shù)是85
C.方差是20
D.極差是15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC和△ADC中,已知AB8,∠ACB105°,∠B45°,且∠ACB=∠BAD,∠B=∠D,則線段CD的長是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正ABC的邊長為2,過點B的直線lAB,且ABCA′BC′關于直線l對稱,D為線段BC′上一動點,則AD+CD的最小值是( )

A. 4 B. 3 C. 2 D. 2+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠BOC60°OF平分∠BOC.AOBO,OE平分∠AOC,則∠EOF的度數(shù)是(  )

A. 45°

B. 15°

C. 30°60°

D. 45°15°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,ADBC,ABC的平分線BEAD于點F,AG平分∠DAC.給出下列結論:①∠BAD=C;AE=AF;③∠EBC=C;FGAC;EF=FG.其中正確的結論是_____

查看答案和解析>>

同步練習冊答案