【題目】我市某學校在“行讀石鼓閣”研學活動中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標.建筑面積7200平方米,為我國西北第一高閣.秦漢高臺門闕的建筑風格,追求穩(wěn)定之中的飛揚靈動,深厚之中的巧妙組合,使景觀功能和標志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學李梅對石鼓閣進行測量.測量方案如下:如圖,李梅在小亮和“石鼓閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應位置為點C,鏡子不動,李梅看著鏡面上的標記,她來回走動,走到點D時,看到“石鼓閣”頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽光下,小亮從D點沿DM方向走了29.4米,此時“石鼓閣”影子與小亮的影子頂端恰好重合,測得小亮身高1.7米,影長FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關信息,求出“石鼓閣”的高AB的長度.
【答案】“石鼓閣”的高AB的長度為56m.
【解析】
根據(jù)題意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根據(jù)反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,根據(jù)相似三角形的性質可得=,再根據(jù)∠AHB=∠GHF,可證△ABH∽△GFH,同理得=,代入數(shù)值計算即可得出結論.
由題意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,
由反射定律可知:∠ACB=∠ECD,
則△ABC∽△EDC,
∴=,
即=①,
∵∠AHB=∠GHF,
∴△ABH∽△GFH,
∴=,即=②,
聯(lián)立①②,解得:AB=56,
答:“石鼓閣”的高AB的長度為56m.
科目:初中數(shù)學 來源: 題型:
【題目】為進一步營造掃黑除惡專項斗爭的濃厚宣傳氛圍,推進平安校園建設,甲、乙兩所學校各租用一輛大巴車組織部分師生,分別從距目的地240千米和270千米的兩地同時出發(fā),前往“研學教育”基地開展掃黑除惡教育活動,已知乙校師生所乘大巴車的平均速度是甲校師生所乘大巴車的平均速度的1.5倍,甲校師生比乙校師生晚1小時到達目的地,分別求甲、乙兩所學校師生所乘大巴車的平均速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,有位農場主有一大片田地,其形狀恰好是一個平行四邊形,并且在對角線上有一口水井.農場主臨死前留下遺囑,把兩塊三角形的田地(即圖中陰影部分)給小兒子,剩下的全部給大兒子,至于水井,正好兩兒子共用,由于平行四邊形兩邊長不同,所以遺囑公布之后,親友們七嘴八舌,議論紛紛,認為這個分配不公平,那么你認為________.(填“公平”或“不公平”)理由是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為( 。
A. 8 B. 9 C. 5+ D. 5+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點D,過點D作∠ABD=∠ADE,交AC于點E.
(1)求證:DE為⊙O的切線.
(2)若⊙O的半徑為,AD=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究
(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關系為 ;
(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;
問題解決
(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以線段AB兩端點A,B為圓心,以大于AB長為半徑畫弧,兩弧交于C,D兩點,作直線CD交AB于點M,DE∥AB,BE∥CD.
(1)判斷四邊形ACBD的形狀,并說明理由;
(2)求證:ME=AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)一次函數(shù)的圖像上,位于x軸上方的點的橫坐標的范圍是________.
(2)當時,直線在x軸的上方,則不等式的解集是________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com