【題目】P是平面直角坐標(biāo)系中的一點且不在坐標(biāo)軸上,過點Px軸、y軸作垂線段,若垂線段的長度的和為4,則點P叫做垂距點,例如:如圖中的點P1,3)是垂距點

1)在點A(﹣2,2),,C(﹣1,5)是垂距點   

2)若垂距點,求m的值.

【答案】1)點A;(2m±1

【解析】

1)根據(jù)題意即可解答;

2)根據(jù)“垂距點”的定義,得到,解得m的值即可.

解:(1)根據(jù)題意,對于點A而言,|2|+|2|4,

所以A是“垂距點”,

對于點B而言,||+||3

所以B不是垂距點,

對于點C而言,|1|+|5|6≠4

所以C不是“垂距點”,

故答案為:點A

2)由題意可知:

①當(dāng)m0時,則4m4,

解得m1

②當(dāng)m0時,則﹣4m4,

解得m=﹣1;

m±1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一艘貨船和一艘客船同時從港口A出發(fā),客船每小時比貨船多走5海里,客船與貨船速度的比為4:3,貨船沿東偏南10°方向航行,2小時后貨船到達(dá)B處,客船到達(dá)C處,若此時兩船相距50海里.

(1)求兩船的速度分別是多少?

(2)求客船航行的方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會積極參與疫情防控工作,某市為了盡快完成100萬只口罩的生產(chǎn)任務(wù),安排甲、乙兩個大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨立完成60萬只口罩的生產(chǎn)任務(wù)時,甲廠比乙廠少用5天.問至少應(yīng)安排兩個工廠工作多少天才能完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠ABC=60°,E是對角線AC上一點,F(xiàn)是線段BC延長線上一點,且CF=AE,連接BE、EF.

(1)若E是線段AC的中點,如圖1,易證:BE=EF(不需證明);
(2)若E是線段AC或AC延長線上的任意一點,其它條件不變,如圖2、圖3,線段BE,EF有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的頂點C在y軸正半軸上,CD平行于x軸,直線AC交x軸于點E,BC⊥AC,連接BE,反比例函數(shù) (x>0)的圖象經(jīng)過點D.已知SBCE=2,則k的值是( )

A.2
B.﹣2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】朗讀者自開播以來,以其厚重的文化底蘊(yùn)和感人的人文情懷,感動了數(shù)以億計的觀眾,岳池縣某中學(xué)開展朗讀比賽活動,九年級、班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績滿分為100如圖所示.

平均數(shù)

中位數(shù)

眾數(shù)

85

85

80

根據(jù)圖示填寫表格;

結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個班級的復(fù)賽成績較好;

如果規(guī)定成績較穩(wěn)定班級勝出,你認(rèn)為哪個班級能勝出?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公司引進(jìn)A、B兩種機(jī)器人用來搬運(yùn)某種貨物,這兩種機(jī)器人充滿電后可以連續(xù)搬運(yùn)5小時,A種機(jī)器人于某日0時開始搬運(yùn),過了1小時,B種機(jī)器人也開始搬運(yùn),如圖,線段OG表示A種機(jī)器人的搬運(yùn)量yA(千克)與時間x(時)的函數(shù)圖象,線段EF表示B種機(jī)器人的搬運(yùn)量yB(千克)與時間x(時)的函數(shù)圖象.根據(jù)圖象提供的信息,解答下列問題:

(1)求yB關(guān)于x的函數(shù)解析式;
(2)如果A、B兩種機(jī)器人連續(xù)搬運(yùn)5個小時,那么B種機(jī)器人比A種機(jī)器人多搬運(yùn)了多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程組與不等式(組),并把不等式(組)解集表示在數(shù)軸上.

1

2

3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AD是高,E、F分別是ABAC的中點,

(1)AB=10,AC=8,求四邊形AEDF的周長;

(2)EFAD有怎樣的位置關(guān)系,證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案