【題目】仔細閱讀下面解方程組的方法,然后解決有關問題:解方程組時,如果直接消元,那將會很繁瑣,若采用下面的解法,則會簡單很多.

解:①-②,得:2x+2y=2,即x+y=1③

③×16,得:16x+16y=16④

②-④,得:x=-1

將x=-1

代入③得:y=2

∴原方程組的解為:

(1)請你采用上述方法解方程組:

(2)請你采用上述方法解關于x,y的方程組,其中

【答案】(1) (2)

【解析】

1)先把兩式相減得出x+y的值,再把x+y的值與2010相乘,再用加減消元法求出x的值,用代入消元法求出y的值即可;
2)先把兩式相減得出(m-n)x+(m-n)y=m-n,的值,再用加減消元法求出x的值,用代入消元法求出y的值即可.

1

-②,得:6x+6y=12,即x+y=2③,

×2010,得:2010x+2010y=4020④,

-②,得:y=404,

y=404代入③得:x=-402

∴方程組的解為:

(2)

-②,得:(m-n)x+(m-n)y=m-n,

m≠n,

x+y=1③,

×(n+3),得:(n+3)x+(n+3)y=n+3④,

-②,得:y=3,

y=3代入③得:x=-2,

∴方程組的解為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB=90°OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O機器人立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球如果小球滾動的速度與機器人行走的速度相等那么機器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在矩形ABCD中,BC=2CD=2a,點E在邊CD上,在矩形ABCD的左側作矩形ECGF,使CG=2GF=2b,連接BD,CF,連結AF交BD于點H.

(1)求證:BD∥CF;
(2)求證:H是AF的中點;
(3)連結CH,若HC⊥BD,求a:b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),E是直線AB、CD內部一點,AB∥CD,連接EA、ED.

(1)探究:

①若∠A=30°,∠D=40°,則∠AED等于多少度?

②若∠A=20°,∠D=60°,則∠AED等于多少度?

③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關系,并證明你的結論.

(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF之間的關系.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________

(2)應用:已知正方形ABCD的邊長為4,點PAD邊上的一點,AP= ,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于 的一元二次方程 的兩個根,且OA>OB

(1)求cos∠ABC的值。
(2)若E為x軸上的點,且 ,求出點E的坐標,并判斷△AOE與△DAO是否相似?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC的三個項點的坐標分別為A (3. 3),B (-3, 0), C (0. -2)

1)在下面的平面直角坐標系中分別描出A,B, C三點,并畫出△ABC;

2)將(1)中的△ABC向上平移3個單位長度,向左中移2個單位長度,得到△在圖中畫出△,請分別寫出A1、B1、C1三點的坐標.

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的方格紙中,每個小方格都是邊長為1個單位的正方形,圖①、圖②、圖③均為頂點都在格點上的三角形(每個小方格的頂點叫格點),

(1)在圖1中,圖①經(jīng)過一次變換(填“平移”或“旋轉”或“軸對稱”)可以得到圖②;
(2)在圖1中,圖③是可以由圖②經(jīng)過一次旋轉變換得到的,其旋轉中心是點(填“A”或 “B”或“C”);
(3)在圖2中畫出圖①繞點A順時針旋轉90°后的圖④.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為慶祝中華人民共和國七十周年華誕,某校舉行書畫大賽,準備購買甲、乙兩種文具,獎勵在活動中表現(xiàn)優(yōu)秀的師生.已知購買個甲種文具、個乙種文具共需花費元;購買個甲種文具、個乙種文具共需花費元.

1)求購買一個甲種文具、一個乙種文具各需多少元?

2)若學校計劃購買這兩種文具共個,投入資金不少于元又不多于元,設購買甲種文具個,求有多少種購買方案?

3)設學校投入資金元,在(2)的條件下,哪種購買方案需要的資金最少?最少資金是多少元?

查看答案和解析>>

同步練習冊答案