【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結(jié)論是________.(寫出正確命題的序號)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】被譽(yù)為“中原第一高樓”的鄭州會展賓館(俗稱“玉米樓”)坐落在風(fēng)景如畫的如意湖畔,是來鄭州觀光的游客留影的最佳景點(diǎn).學(xué)完了三角函數(shù)知識后,劉明和王華決定用自己學(xué)到的知識測量“玉米樓”的高度.如圖,劉明在點(diǎn)C處測得樓頂B的仰角為45°,王華在高臺上的D處測得樓頂?shù)难鼋菫?/span>40°.若高臺DE的高為5米,點(diǎn)D到點(diǎn)C的水平距離EC為47.4米,A,C,E三點(diǎn)共線,求“玉米樓”AB的高度.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4, PC=5,若將△APB繞著點(diǎn)B逆時針旋轉(zhuǎn)后得到△CQB,則∠APB的度數(shù)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年某企業(yè)按餐廚垃圾處理費(fèi)25元/噸,建筑垃圾處理費(fèi)16元/噸標(biāo)準(zhǔn),共支付餐廚和建筑垃圾處理費(fèi)5200元,從2014年元月起,收費(fèi)標(biāo)準(zhǔn)上調(diào)為:餐廚垃圾處理費(fèi)100元/噸,建筑垃圾處理費(fèi)30元/噸,若該企業(yè)2014年處理的這兩種垃圾數(shù)量與2013年相比沒有變化,就要多支付垃圾處理費(fèi)8800元,
(1)該企業(yè)2013年處理的餐廚垃圾和建筑垃圾各多少噸?
(2)該企業(yè)計劃2014年將上述兩種垃圾處理量減少到240噸,且建筑垃圾處理費(fèi)不超過餐廚垃圾處理量的3倍,則2014年該企業(yè)最少需要支付這兩種垃圾處理費(fèi)共多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,,滿足:..
(1)______;
(2)點(diǎn)是點(diǎn)左側(cè)的軸上一點(diǎn),連接,以為直角邊作等腰直角,.連接,交于點(diǎn);
①求.
②若平分,試求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,點(diǎn)D在底邊BC上,添加下列條件后,仍無法判定△ABD≌△ACD的是( )
A. BD=CD B. ∠BAD=∠CAD C. ∠B=∠C D. ∠ADB=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB BC AC,∠A ∠B ∠C 60°.點(diǎn) D、E 分別是邊 AC、AB 上的點(diǎn)(不與 A、B、C 重合),點(diǎn) P 是平面內(nèi)一動點(diǎn).設(shè)∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn) P 在邊 BC 上運(yùn)動(不與點(diǎn) B 和點(diǎn) C 重合),如圖⑴所示,則∠1+∠2 .(用 α 的代數(shù)式表示)
(2)若點(diǎn) P 在△ABC 的外部,如圖⑵所示,則∠α、∠1、∠2 之間有何關(guān)系?寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AD,BE,CF構(gòu)成∠1,∠2,∠3,則∠1+∠2+∠3=( )
A. 180° B. 360° C. 540° D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長線上,弦CD⊥AB于點(diǎn)E,OE:EA=1:2,PA=6,∠POC=∠PCE.
(1)求證:PC是⊙O的切線;
(2)求⊙O的半徑;
(3)求sin∠PCA的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com