(2013•湖北)如圖,正方形ABCD的對(duì)角線(xiàn)相交于點(diǎn)O,正三角形OEF繞點(diǎn)O旋轉(zhuǎn).在旋轉(zhuǎn)過(guò)程中,當(dāng)AE=BF時(shí),∠AOE的大小是
15°或165°
15°或165°
分析:討論:如圖1,連結(jié)AE、BF,根據(jù)正方形與等邊三角形的性質(zhì)得OA=OB,∠AOB=90°,OE=OF,∠EOF=60°,根據(jù)“SSS”可判斷△AOE≌△BOF,則∠AOE=∠BOF,于是∠AOE=∠BOF=
1
2
(90°-60°)=15°;如圖2,同理可證得△AOE≌△BOF,所以∠AOE=∠BOF,則∠DOF=∠COE,于是∠DOF=
1
2
(90°-60°)=15°,所以∠AOE=180°-15°=165°.
解答:解:連結(jié)AE、BF,
如圖1,
∵四邊形ABCD為正方形,
∴OA=OB,∠AOB=90°,
∵△OEF為等邊三角形,
∴OE=OF,∠EOF=60°,
∵在△OAE和△OBF中
OA=OB
OE=OF
AE=BF

∴△OAE≌△OBF(SSS),
∴∠AOE=∠BOF=
1
2
(90°-60°)=15°,
如圖2,
∵在△AOE和△BOF中
OA=OB
OE=OF
AE=BF

∴△AOE≌△BOF(SSS),
∴∠AOE=∠BOF,
∴∠DOF=∠COE,
∴∠DOF=
1
2
(90°-60°)=15°,
∴∠AOE=180°-15°=165°,
∴∠AOE大小為15°或165°.
故答案為15°或165°.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線(xiàn)段的夾角等于旋轉(zhuǎn)角.也考查了正方形與等邊三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)如圖,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分線(xiàn)交BC于點(diǎn)M,交AB于點(diǎn)E,AC的垂直平分線(xiàn)交BC于點(diǎn)N,交AC于點(diǎn)F,則MN的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)如圖,兩個(gè)完全相同的三角尺ABC和DEF在直線(xiàn)l上滑動(dòng).要使四邊形CBFE為菱形,還需添加的一個(gè)條件是
答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等
答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等
(寫(xiě)出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)如圖,在平面直角坐標(biāo)系中,雙曲線(xiàn)y=
m
x
和直線(xiàn)y=kx+b交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(-3,2),BC⊥y軸于點(diǎn)C,且OC=6BC.
(1)求雙曲線(xiàn)和直線(xiàn)的解析式;
(2)直接寫(xiě)出不等式
m
x
>kx+b
的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)如圖,已知拋物線(xiàn)y=ax2+bx-4經(jīng)過(guò)A(-8,0),B(2,0)兩點(diǎn),直線(xiàn)x=-4交x軸于點(diǎn)C,交拋物線(xiàn)于點(diǎn)D.
(1)求該拋物線(xiàn)的解析式;
(2)點(diǎn)P在拋物線(xiàn)上,點(diǎn)E在直線(xiàn)x=-4上,若以A,O,E,P為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)若B,D,C三點(diǎn)到同一條直線(xiàn)的距離分別是d1,d2,d3,問(wèn)是否存在直線(xiàn)l,使d1=d2=
d32
?若存在,請(qǐng)直接寫(xiě)出d3的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案