(2013•湖北)如圖,在平面直角坐標(biāo)系中,雙曲線y=
m
x
和直線y=kx+b交于A,B兩點,點A的坐標(biāo)為(-3,2),BC⊥y軸于點C,且OC=6BC.
(1)求雙曲線和直線的解析式;
(2)直接寫出不等式
m
x
>kx+b
的解集.
分析:(1)將A坐標(biāo)代入反比例解析式中求出m的值,確定出反比例解析式,根據(jù)OC=6BC,且B在反比例圖象上,設(shè)B坐標(biāo)為(a,-6a),代入反比例解析式中求出a的值,確定出B坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;
(2)根據(jù)一次函數(shù)與反比例函數(shù)的兩交點A與B的橫坐標(biāo),以及0,將x軸分為四個范圍,找出反比例圖象在一次函數(shù)圖象上方時x的范圍即可.
解答:解:(1)∵點A(-3,2)在雙曲線y=
m
x
上,
∴2=
m
-3
,即m=-6,
∴雙曲線的解析式為y=-
6
x

∵點B在雙曲線y=-
6
x
上,且OC=6BC,
設(shè)點B的坐標(biāo)為(a,-6a),
∴-6a=-
6
a
,解得:a=±1(負(fù)值舍去),
∴點B的坐標(biāo)為(1,-6),
∵直線y=kx+b過點A,B,
2=-3k+b
-6=k+b
,
解得:
k=-2
b=-4

∴直線的解析式為y=-2x-4;

(2)根據(jù)圖象得:不等式
m
x
>kx+b的解集為-3<x<0或x>1.
點評:此題考查了一次函數(shù)與反比例函數(shù)的交點問題,利用了待定系數(shù)法及數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖北)如圖,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分線交BC于點M,交AB于點E,AC的垂直平分線交BC于點N,交AC于點F,則MN的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖北)如圖,兩個完全相同的三角尺ABC和DEF在直線l上滑動.要使四邊形CBFE為菱形,還需添加的一個條件是
答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等
答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等
(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖北)如圖,正方形ABCD的對角線相交于點O,正三角形OEF繞點O旋轉(zhuǎn).在旋轉(zhuǎn)過程中,當(dāng)AE=BF時,∠AOE的大小是
15°或165°
15°或165°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖北)如圖,已知拋物線y=ax2+bx-4經(jīng)過A(-8,0),B(2,0)兩點,直線x=-4交x軸于點C,交拋物線于點D.
(1)求該拋物線的解析式;
(2)點P在拋物線上,點E在直線x=-4上,若以A,O,E,P為頂點的四邊形是平行四邊形,求點P的坐標(biāo);
(3)若B,D,C三點到同一條直線的距離分別是d1,d2,d3,問是否存在直線l,使d1=d2=
d32
?若存在,請直接寫出d3的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案