已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C.

(1)求拋物線的函數(shù)解析式;

(2)求拋物線的對稱軸和C點的坐標(biāo).

 

【答案】

(1)拋物線的解析式是:y=x2+2x;(2)對稱軸為直線x=-1,C(-1,-1).

【解析】

試題分析:(1)已知圖象上的三點,求拋物線的解析式,一般都是用待定系數(shù)法,設(shè)拋物線的解析式為y=ax2+bx+c,將三個點的坐標(biāo)分別帶入拋物線的解析式,得到一個三元一次方程組,解這個方程組,求出系數(shù)a、b、c,從而得到拋物線解析式.(2)要求拋物線的對稱軸和頂點坐標(biāo),一般地,都是將拋物線解析式配方,然后求得拋物線的對稱軸和頂點.

試題解析:(6分)(1)設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),

將點A(﹣2,0),B(﹣3,3),O(0,0),代入可得:,

解得:

故函數(shù)解析式為:y=x2+2x.

(2)對稱軸為直線x=-1,C(-1,-1).

考點:二次函數(shù)的圖象.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-4,0),B(0,-4),
C(2,0)三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△AMB的面積為S.
求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線y=-x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過點A(4,0)、B(1,-6)和原點.求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,已知拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),拋物線對稱軸l與x軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)點P在拋物線上,且以A、O、M、P為頂點的四邊形四條邊的長度為四個連續(xù)的正整數(shù),請你直接寫出點P的坐標(biāo);
(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點N,使△NAC的面積最大?若存在,請你求出點N的坐標(biāo);若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件,求二次函數(shù)的關(guān)系式
(1)已知拋物線的頂點在(1,-2),且過點(2,3);
(2)已知拋物線經(jīng)過(2,0)、(0,-2)和(-2,3)三點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過A(-2,0),B(-3,3)及原點O,頂點為C.
(1)求拋物線的函數(shù)解析式;
(2)求拋物線的對稱軸和C點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案