(1)證明:∵在Rt△ABC中,AB=AC,AD為BC邊的中線,
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF
在△AED與△CFD中,
,
∴△AED≌△CFD(ASA).
(2)解:由(1)知:AE=CF=6,同理AF=BE=8.
∵∠EAF=90°,
∴EF
2=AE
2+AF
2=6
2+8
2=100.
∴EF=10,
又∵由(1)知:△AED≌△CFD,
∴DE=DF,
∴△DEF為等腰直角三角形,DE
2+DF
2=EF
2=100,
∴DE=DF=
,
∴S
△DEF=
×
=25.
分析:(1)由△ABC是等腰直角三角形,AB=AC,AD是斜邊的中線,可得:AD=DC,∠EAD=∠C=45°,AD⊥BC即∠CDF+∠ADF=90°,又DE⊥DF,可得:∠EDA+∠ADF=90°,故∠EDA=∠CDF,從而可證:△AED≌△CFD;
(2)由(1)知:AE=CF,AF=BC,DE=DF,即△EDF為等腰直角三角形,在Rt△AEF中,運用勾股定理可將EF的值求出,進而可求出DE、DF的值,代入S
△EDF=
DE
2進行求解.
點評:本題重點考查了三角形全等的判定定理,普通兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無法證明三角形全等.