如圖,已知△ABC是等腰直角三角形,AB=AC,AD是斜邊的中線,E、F分別是AB、AC邊上的點,且DE⊥DF,若BE=8,CF=6.
(1)求證:△AED≌△CFD;
(2)求△DEF的面積.

(1)證明:∵在Rt△ABC中,AB=AC,AD為BC邊的中線,
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF
在△AED與△CFD中,,
∴△AED≌△CFD(ASA).

(2)解:由(1)知:AE=CF=6,同理AF=BE=8.
∵∠EAF=90°,
∴EF2=AE2+AF2=62+82=100.
∴EF=10,
又∵由(1)知:△AED≌△CFD,
∴DE=DF,
∴△DEF為等腰直角三角形,DE2+DF2=EF2=100,
∴DE=DF=,
∴S△DEF=×=25.
分析:(1)由△ABC是等腰直角三角形,AB=AC,AD是斜邊的中線,可得:AD=DC,∠EAD=∠C=45°,AD⊥BC即∠CDF+∠ADF=90°,又DE⊥DF,可得:∠EDA+∠ADF=90°,故∠EDA=∠CDF,從而可證:△AED≌△CFD;
(2)由(1)知:AE=CF,AF=BC,DE=DF,即△EDF為等腰直角三角形,在Rt△AEF中,運用勾股定理可將EF的值求出,進而可求出DE、DF的值,代入S△EDF=DE2進行求解.
點評:本題重點考查了三角形全等的判定定理,普通兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無法證明三角形全等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網的坐標為(-1,0).
(1)寫出B,C,D三點的坐標;
(2)若拋物線y=ax2+bx+c經過B,C,D三點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯(lián)結BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案