在紙上畫出四個(gè)點(diǎn)(其中任意三個(gè)點(diǎn)都不在同一直線上),經(jīng)過(guò)每?jī)蓚(gè)點(diǎn)用直尺畫一條直線,一共可以畫
6
6
條.
分析:根據(jù)過(guò)兩點(diǎn)的直線有1條,過(guò)不在同一直線上的三點(diǎn)的直線有3條,過(guò)任何三點(diǎn)都不在一條直線上四點(diǎn)的直線有6條,按此規(guī)律,由特殊到一般,總結(jié)出公式:平面內(nèi)任意三個(gè)點(diǎn)都不在同一直線上,平面內(nèi)有n個(gè)點(diǎn),一共可以畫直線的條數(shù)為
n(n-1)
2
解答:解:平面內(nèi)有四個(gè)點(diǎn),一共可以畫3+2+1=4×3÷2=6條直線;
故答案為6.
點(diǎn)評(píng):本題是探索規(guī)律題,有m個(gè)點(diǎn),每三個(gè)點(diǎn)都不在一條直線上,過(guò)其中每?jī)蓚(gè)點(diǎn)畫直線,可以畫
n(n-1)
2
條直線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖①方法折疊,其中點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE是等腰三角形;

(2)再將圖①中的△CBE沿對(duì)稱軸EF折疊(如圖②).通過(guò)折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無(wú)縫無(wú)重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請(qǐng)?jiān)趫D③中畫出折痕;

(3)請(qǐng)?jiān)趫D④的方格紙中畫出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;

(4)有一些特殊的四邊形,如菱形,通過(guò)折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請(qǐng)你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

同步練習(xí)冊(cè)答案