設(shè)n是正整數(shù),0<x≤1,在△ABC中,如果AB=n+x,BC=n+2x,CA=n+3x,BC邊上的高AD=n,那么,這樣的三角形共有( 。
分析:由已知可知在△ABC的三個(gè)角中,∠C最小,再根據(jù)余弦定理和勾股定理用n表示x,根據(jù)0<x≤1,可得關(guān)于n的不等式,解得n的取值范圍,從而得到三角形的個(gè)數(shù).
解答:解:已知n是正整數(shù),0<x≤1,AB=n+x,BC=n+2x,CA=n+3x,可知在△ABC的三個(gè)角中,∠C最小,
根據(jù)余弦定理,得
AB2=BC2+CA2-2BC•CA•cosC
cosC=(BC2+CA2-AB2)÷(2BC•CA)
=[(n+2x)2+(n+3x)2-(n+x)2]÷[2•(n+2x)•(n+3x)]
=(n+6x)÷[2•(n+3x)]
在RT△ADC中,
CD=CA•cosC=(n+3x)•(n+6x)÷[2•(n+3x)]=(n+6x)÷2
根據(jù)勾股定理,得
CA2=AD2+CD2
(n+3x)2=n2+(n+6x)2÷4
n=12x
x=n÷12
0<x≤1
0<n÷12≤1
0<n≤12
因n是正整數(shù),故這樣的三角形最多共有12個(gè).
故選C.
點(diǎn)評(píng):本題考查了三角形三邊關(guān)系,余弦定理,勾股定理和解不等式,綜合性較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a是正整數(shù),二次函數(shù)y=x2+(a+17)x+38-a,反比例函數(shù)y=
56x
,如果兩個(gè)函數(shù)的圖象的交點(diǎn)都是整點(diǎn)(橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn)),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、設(shè)n是正整數(shù),d1<d2<d3<d4是n的四個(gè)最小的正整數(shù)約數(shù),若n=d12+d22+d32+d42,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,每個(gè)圓周上的數(shù)是按下述規(guī)則逐次標(biāo)出的:第一次先在圓周上標(biāo)出
1
9
2
9
兩個(gè)數(shù)(如圖1);第二次又在第一次標(biāo)出的兩個(gè)之間的圓周上,分別標(biāo)出這兩個(gè)數(shù)的和(如圖2);第三次再在第二次標(biāo)出的所有相鄰兩數(shù)之間的圓周上,分別標(biāo)出相鄰兩數(shù)的和(如圖3);按此規(guī)則,依此類推,一直標(biāo)下去.
精英家教網(wǎng)
(1)設(shè)n是正整數(shù),記第n次標(biāo)完數(shù)字后,圓周上所有數(shù)字的和為Sn,猜想并寫(xiě)出Sn與Sn-1的關(guān)系;
(2)求S2010的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)n是正整數(shù),且是15的倍數(shù),n=15m.已知m是完全平方數(shù),120×n是完全立方數(shù),36×n是完全5次方數(shù),則n的最小值是
218×323×55
218×323×55

查看答案和解析>>

同步練習(xí)冊(cè)答案