精英家教網 > 初中數學 > 題目詳情
(2007•連云港)如圖1,點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學習時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點(如圖2),則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進一步探究中發(fā)現:過點C任作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.
(4)如圖4,點E是平行四邊形ABCD的邊AB的黃金分割點,過點E作EF∥AD,交DC于點F,顯然直線EF是平行四邊形ABCD的黃金分割線.請你畫一條平行四邊形ABCD的黃金分割線,使它不經過平行四邊形ABCD各邊黃金分割點.

【答案】分析:(1)若點D為AB邊上的黃金分割點,則有.如果設△ABC的邊AB上的高為h,根據三角形的面積公式,易得,,即有,根據圖形的黃金分割線的定義即可判斷;
(2)由于等底同高的兩個三角形的面積相等,所以三角形任意一邊上的中線都將三角形分成面積相等的兩部分,即有,則,從而可知三角形的中線不可能是該三角形的黃金分割線;
(3)由于直線CD是△ABC的黃金分割線,所以.要想說明直線EF也是△ABC的黃金分割線,只需證明,即證S△ADC=S△AEF,S△BDC=S四邊形BEFC即可.因為DF∥CE,所以△DFC和△DFE的公共邊DF上的高也相等,所以有S△DFC=S△DFE,所以S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四邊形BEFC
(4)根據黃金分割線的定義即可作出.本題答案不唯一,作法有無數種.
解答:解:(1)直線CD是△ABC的黃金分割線.理由如下:
設△ABC的邊AB上的高為h.
,,

又∵點D為邊AB的黃金分割點,
,

故直線CD是△ABC的黃金分割線.

(2)∵三角形的中線將三角形分成面積相等的兩部分,
,即,
故三角形的中線不可能是該三角形的黃金分割線.

(3)∵DF∥CE,
∴△DFC和△DFE的公共邊DF上的高也相等,
∴S△DFC=S△DFE,
∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四邊形BEFC
又∵,

因此,直線EF也是△ABC的黃金分割線.(7分)

(4)畫法不惟一,現提供兩種畫法;
畫法一:如答圖1,取EF的中點G,再過點G作一條直線分別交AB,DC于M,N點,則直線MN就是平行四邊形ABCD的黃金分割線.
畫法二:如答圖2,在DF上取一點N,連接EN,再過點F作FM∥NE交AB于點M,連接MN,則直線MN就是平行四邊形ABCD的黃金分割線.

(9分)
點評:本題考查學生的閱讀能力、知識遷移能力、分析問題及解決問題的能力.綜合性較強,有一定難度.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年全國中考數學試題匯編《四邊形》(06)(解析版) 題型:解答題

(2007•連云港)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,頂點A,C在坐標軸上,OA=60cm,OC=80cm.動點P從點O出發(fā),以5cm/s的速度沿x軸勻速向點C運動,到達點C即停止.設點P運動的時間為ts.
(1)過點P作對角線OB的垂線,垂足為點T.求PT的長y與時間t的函數關系式,并寫出自變量t的取值范圍;
(2)在點P運動過程中,當點O關于直線AP的對稱點O'恰好落在對角線OB上時,求此時直線AP的函數解析式;
(3)探索:以A,P,T三點為頂點的△APT的面積能否達到矩形OABC面積的?請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《三角形》(04)(解析版) 題型:選擇題

(2007•連云港)如圖,在△ABC中,AB=AC=2,∠BAC=20°.動點P、Q分別在直線BC上運動,且始終保持∠PAQ=100°.設BP=x,CQ=y,則y與x之間的函數關系用圖象大致可以表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《一次函數》(04)(解析版) 題型:解答題

(2007•連云港)某地區(qū)一種商品的需求量y1(萬件)、供應量y2(萬件)與價格x(元/件)分別近似滿足下列函數關系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應.當y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍,該商品的需求量低于供應量;
(3)當需求量高于供應量時,政府常通過對供應方提供價格補貼來提高供貨價格,以提高供應量.現若要使穩(wěn)定需求量增加4萬件,政府應對每件商品提供多少元補貼,才能使供應量等于需求量?

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《一次函數》(03)(解析版) 題型:解答題

(2007•連云港)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,頂點A,C在坐標軸上,OA=60cm,OC=80cm.動點P從點O出發(fā),以5cm/s的速度沿x軸勻速向點C運動,到達點C即停止.設點P運動的時間為ts.
(1)過點P作對角線OB的垂線,垂足為點T.求PT的長y與時間t的函數關系式,并寫出自變量t的取值范圍;
(2)在點P運動過程中,當點O關于直線AP的對稱點O'恰好落在對角線OB上時,求此時直線AP的函數解析式;
(3)探索:以A,P,T三點為頂點的△APT的面積能否達到矩形OABC面積的?請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年湖北省黃石市十六中中考數學模擬試卷(解析版) 題型:解答題

(2007•連云港)某地區(qū)一種商品的需求量y1(萬件)、供應量y2(萬件)與價格x(元/件)分別近似滿足下列函數關系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應.當y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍,該商品的需求量低于供應量;
(3)當需求量高于供應量時,政府常通過對供應方提供價格補貼來提高供貨價格,以提高供應量.現若要使穩(wěn)定需求量增加4萬件,政府應對每件商品提供多少元補貼,才能使供應量等于需求量?

查看答案和解析>>

同步練習冊答案