【題目】為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分學生成績(得分數(shù)取正整數(shù),滿分為100分)進行統(tǒng)計,繪制統(tǒng)計圖如下(未完成),解答下列問題:

1)若A組的頻數(shù)比B組小24,求頻數(shù)分布直方圖中的的值;

2)扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)分布直方圖;

3)若成績在80分以上為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)異的學生有多少名?

【答案】1a=16 b=40;(2126°,圖詳見解析;(3940

【解析】

1)根據(jù)若A組的頻數(shù)比B組小24,且已知兩個組的百分比,據(jù)此即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得a、b的值;
2)利用360°乘以對應的比例即可求解;
3)利用總?cè)藬?shù)乘以對應的百分比即可求解.

1)學生總數(shù)是24÷20%-8%=200(人),
a=200×8%=16,b=200×20%=40;
2n=360×=126°
C組的人數(shù)是:200×25%=50.如圖所示:

3)樣本D、E兩組的百分數(shù)的和為1-25%-20%-8%=47%
2000×47%=940(名)
答:估計成績優(yōu)秀的學生有940名.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中裝有1個白球、2個黃球和3個紅球,每個球除顏色外都相同,將球搖勻,從中任意摸出1個球.

(1)判斷摸到什么顏色的球可能性最大?

(2)求摸到黃顏色的球的概率;

(3)要使摸到這三種顏色的球的概率相等,需要在這個口袋里的球做什么調(diào)整?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育彩票經(jīng)銷商計劃用4500元從省體彩中心購進彩票20捆,已知體彩中心有、三種不同價格的彩票,進價分別是彩票每捆150元,彩票每捆200元,彩票每捆250元.

1)若經(jīng)銷商同時購進兩種不同型號的彩票20捆,剛好用去4500元,請你幫助設計進票方案;

2)若銷售型彩票每捆獲手續(xù)費20元,型彩票每捆獲手續(xù)費30元,型彩票每捆獲手續(xù)費50元.在問題(1)設計的購進兩種彩票的方案中,為使銷售完時獲得的手續(xù)費最多,你選擇哪種進票方案?

3)若經(jīng)銷商準備用4500元同時購進、、三種彩票20捆,請你幫助經(jīng)銷商設計進票方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y= 與y=﹣kx2+k(k≠0)在同一直角坐標系中的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上, 點A的坐標為(2,4).

(1)畫出△ABC關于x軸對稱的△A1B1C1,并寫出點A的對應點坐標A1

(2)畫出△A1B1C1繞原點O旋轉(zhuǎn)180°后得到的△A2B2C2,并寫出點A2的坐標A2

(3)設BC邊上的高AD,則AD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.

(1)已知點M,N是線段AB的勾股分割點,若AM=2,MN=3,則BN=;
(2)如圖2,在△ABC中,F(xiàn)G是中位線,點D,E是線段BC的勾股分割點,且EC>DE≥BD,連接AD,AE分別交FG于點M,N,求證:點M,N是線段FG的勾股分割點;

(3)如圖3,已知點M,N是線段AB的勾股分割點,MN>AM≥BN,四邊形AMDC,四邊形MNFE和四邊形NBHG均是正方形,點P在邊EF上,試探究SACN , SAPB , SMBH的數(shù)量關系.
SACN=;SMBH=;SAPB=
SACN , SAPB , SMBH的數(shù)量關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一水池有甲、乙、丙三個水管,其中甲、丙兩管為進水管,乙管為出水管.單位時間內(nèi),甲管水流量最大,丙管水流量最小.先開甲、乙兩管,一段時間后,關閉乙管開丙管,又經(jīng)過一段時間,關閉甲管開乙管.則能正確反映水池蓄水量y(立方米)隨時間t(小時)變化的圖象是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x+4與反比例函數(shù)y= 的圖象相交于點A(﹣2,a),并且與x軸相交于點B.

(1)求反比例函數(shù)的表達式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將三角形ABC向右平移5個單位長度,再向上平移3個單位長度請回答下列問題:

1)平移后的三個頂點坐標分別為:A1   ,B1   C1   ;

2)畫出平移后三角形A1B1C1;

3)求三角形ABC的面積.

查看答案和解析>>

同步練習冊答案