【答案】
分析:(1)根據(jù)拋物線與x軸只有一個(gè)交點(diǎn)可知△的值為0,由此得到一個(gè)關(guān)于m的一元一次方程,解此方程可得m的值;
(2)根據(jù)拋物線的解析式求出頂點(diǎn)坐標(biāo),根據(jù)A點(diǎn)在y軸上求出A點(diǎn)坐標(biāo),再求C點(diǎn)坐標(biāo),根據(jù)三個(gè)點(diǎn)的坐標(biāo)得出△ABC為等腰直角三角形;
(3)根據(jù)拋物線解析式求出E、F的坐標(biāo),然后分別討論以E為直角頂點(diǎn)和以F為直角頂點(diǎn)P的坐標(biāo).
解答:解:(1)∵拋物線y=x
2-2x+m-1與x軸只有一個(gè)交點(diǎn),
∴△=(-2)
2-4×1×(m-1)=0,
解得,m=2;
(2)由(1)知拋物線的解析式為y=x
2-2x+1=(x-1)
2,易得頂點(diǎn)B(1,0),
當(dāng)x=0時(shí),y=1,得A(0,1).
由1=x
2-2x+1,解得,x=0(舍)或x=2,所以C點(diǎn)坐標(biāo)為:(2,1).
過(guò)C作x軸的垂線,垂足為D,則CD=1,BD=x
D-x
B=1.
∴在Rt△CDB中,∠CBD=45°,BC=
.
同理,在Rt△AOB中,AO=OB=1,于是∠ABO=45°,AB=
.
∴∠ABC=180°-∠CBD-∠ABO=90°,AB=BC,
因此△ABC是等腰直角三角形;
(3)由題知,拋物線C′的解析式為y=x
2-2x-3,
當(dāng)x=0時(shí),y=-3;
當(dāng)y=0時(shí),x=-1或x=3,
∴E(-1,0),F(xiàn)(0,-3),即OE=1,OF=3.
第一種情況:若以E點(diǎn)為直角頂點(diǎn),設(shè)此時(shí)滿足條件的點(diǎn)為P
1(x
1,y
1),作P
1M⊥x軸于M.
∵∠P
1EM+∠OEF=∠EFO+∠OEF=90°,
∴∠P
1EM=∠EFO,得Rt△EFO∽R(shí)t△P
1EM,
則
,即EM=3P
1M.
∵EM=x
1+1,P
1M=y
1,
∴x
1+1=3y
1①
由于P
1(x
1,y
1)在拋物線C′上,
則有3(x
12-2x
1-3)=x
1+1,
整理得,3x
12-7x
1-10=0,解得,
,或x
2=-1(舍去)
把
代入①中可解得,
y
1=
.
∴P
1(
,
).
第二種情況:若以F點(diǎn)為直角頂點(diǎn),設(shè)此時(shí)滿足條件的點(diǎn)為P
2(x
2,y
2),作P
2N⊥y軸于N.
同第一種情況,易知Rt△EFO∽R(shí)t△FP
2N,
得
,即P
2N=3FN.
∵P
2N=x
2,F(xiàn)N=3+y
2,
∴x
2=3(3+y
2)②
由于P
2(x
2,y
2)在拋物線C′上,
則有x
2=3(3+x
22-2x
2-3),
整理得3x
22-7x
2=0,解得x
2=0(舍)或
.
把
代入②中可解得,
.
∴P
2(
,
).
綜上所述,滿足條件的P點(diǎn)的坐標(biāo)為:(
,
)或(
,
).
點(diǎn)評(píng):本題考查二次函數(shù)的綜合運(yùn)用,其中涉及求拋物線解析式和拋物線的頂點(diǎn)、三角形相似、拋物線的平移及直角三角形的性質(zhì).