【題目】解方程(按要求方法解方程,否則不得分,沒(méi)有要求的請(qǐng)用適當(dāng)?shù)姆椒ń夥匠蹋?/span>
(1)(直接開(kāi)方法) (2)(配方法)
(3)(公式法) (4)(因式分解法)
(5) (6)
【答案】(1),;(2),;(3), (4),;(5),;(6)
【解析】
(1)用直接開(kāi)平方法解答即可;
(2)用配方法解答即可;
(3)化為一般形式,用公式法解答即可;
(4)移項(xiàng)后用因式分解法解答即可;
(5)用因式分解法解答即可;
(6)去分母化為整式方程,求解即可.
(1)x-2=±3,∴x=2±3,∴,;
(2),,,∴,∴,;
(3)整理得:,a=3,b=-2,c=-6,∴△==76>0,∴x=,∴,;
(4),,∴(3x+2)(x-2)=0,∴,;
(5),,∴,;
(6)兩邊同乘以(x-2)得:2x+2=x-2,移項(xiàng)得:2x-x=-2-2,合并同類(lèi)項(xiàng)得:x=-4.經(jīng)檢驗(yàn):x=-4是原方程的解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)舉行鋼筆書(shū)法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合圖中相關(guān)信息解答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中三等獎(jiǎng)所在扇形的圓心角的度數(shù)是______度;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;
(3)獲得一等獎(jiǎng)的同學(xué)中有來(lái)自七年級(jí),有來(lái)自九年級(jí),其他同學(xué)均來(lái)自八年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選2人參加市級(jí)鋼筆書(shū)法大賽,請(qǐng)通過(guò)列表或畫(huà)樹(shù)狀圖的方法求所選出的2人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為2,將射線(xiàn)AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α,所得射線(xiàn)與線(xiàn)段BD交于點(diǎn)M,作CE⊥AM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線(xiàn)CE對(duì)稱(chēng),連接CN.
(1)如圖,當(dāng)0°<α<45°時(shí):
①依題意補(bǔ)全圖;
②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;
(2)當(dāng)45°<α<90°時(shí),探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;
(3)當(dāng)0°<α<90°時(shí),若邊AD的中點(diǎn)為F,直接寫(xiě)出線(xiàn)段EF長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,點(diǎn)為的中點(diǎn),為的弦,且,垂足為,連接交于點(diǎn),連接,,.
(1)求證:;
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知,函數(shù)的圖象與軸有個(gè)交點(diǎn),函數(shù)的圖象與軸有個(gè)交點(diǎn),則與的數(shù)量關(guān)系是( )
A.B.或
C.或D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“作已知三角形的高”的尺規(guī)作圖過(guò)程.
已知: .
求作: 邊上的高
作法:如圖,
(1)分別以點(diǎn)和點(diǎn)為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于, 兩點(diǎn);
(2)作直線(xiàn),交于點(diǎn);
(3)以為圓心, 為半徑⊙O,與CB的延長(zhǎng)線(xiàn)交于點(diǎn)D,連接AD,線(xiàn)段AD即為所作的高.
請(qǐng)回答;該尺規(guī)作圖的依據(jù)是___________________________________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明在教學(xué)樓的窗戶(hù)A處,測(cè)量樓前的一棵樹(shù)CD的高.現(xiàn)測(cè)得樹(shù)頂C處的俯角為45°,樹(shù)底D處的俯角為60°,樓底到大樹(shù)的距離BD為10米.請(qǐng)你幫助小明計(jì)算樹(shù)的高度(精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,.
求的取值范圍.
是否存在實(shí)數(shù),使方程的兩實(shí)數(shù)根互為相反數(shù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com