【題目】如圖,已知,點(diǎn)為邊中點(diǎn),點(diǎn)在線(xiàn)段上運(yùn)動(dòng),點(diǎn)在線(xiàn)段上運(yùn)動(dòng),連接,則周長(zhǎng)的最小值為______.
【答案】
【解析】
作梯形ABCD關(guān)于AB的軸對(duì)稱(chēng)圖形,將BC'繞點(diǎn)C'逆時(shí)針旋轉(zhuǎn)120°,則有GE'=FE',P與Q是關(guān)于AB的對(duì)稱(chēng)點(diǎn),當(dāng)點(diǎn)F'、G、P三點(diǎn)在一條直線(xiàn)上時(shí),△FEP的周長(zhǎng)最小即為F'G+GE'+E'P,此時(shí)點(diǎn)P與點(diǎn)M重合,F'M為所求長(zhǎng)度;過(guò)點(diǎn)F'作F'H⊥BC',M是BC中點(diǎn),則Q是BC'中點(diǎn),由已知條件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=,HC'=1,在Rt△MF'H中,即可求得F'M.
作梯形ABCD關(guān)于AB的軸對(duì)稱(chēng)圖形,
作F關(guān)于AB的對(duì)稱(chēng)點(diǎn)G,P關(guān)于AB的對(duì)稱(chēng)點(diǎn)Q,
∴PF=GQ,
將BC'繞點(diǎn)C'逆時(shí)針旋轉(zhuǎn)120°,Q點(diǎn)關(guān)于C'G的對(duì)應(yīng)點(diǎn)為F',
∴GF'=GQ,
設(shè)F'M交AB于點(diǎn)E',
∵F關(guān)于AB的對(duì)稱(chēng)點(diǎn)為G,
∴GE'=FE',
∴當(dāng)點(diǎn)F'、G、P三點(diǎn)在一條直線(xiàn)上時(shí),△FEP的周長(zhǎng)最小即為F'G+GE'+E'P,此時(shí)點(diǎn)P與點(diǎn)M重合,
∴F'M為所求長(zhǎng)度;
過(guò)點(diǎn)F'作F'H⊥BC',
∵M是BC中點(diǎn),
∴Q是BC'中點(diǎn),
∵∠B=90°,∠C=60°,BC=2AD=4,
∴C'Q=F'C'=2,∠F'C'H=60°,
∴F'H=,HC'=1,
∴MH=7,
在Rt△MF'H中,F'M;
∴△FEP的周長(zhǎng)最小值為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知為的直徑,為的切線(xiàn),連接,過(guò)作交于,連接交于,延長(zhǎng)交于點(diǎn)
(1)求證:是的切線(xiàn);
(2)若
①求的長(zhǎng);
②連接交于,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在以為原點(diǎn)的平面直角坐標(biāo)系中,拋物線(xiàn)的頂點(diǎn)為點(diǎn),且經(jīng)過(guò)點(diǎn),,三點(diǎn).
(1)求直線(xiàn)和該拋物線(xiàn)相應(yīng)的函數(shù)表達(dá)式;
(2)如圖①,點(diǎn)為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且在直線(xiàn)的上方,過(guò)點(diǎn)作軸的平行線(xiàn)與直線(xiàn)交于點(diǎn),求的最大值.
(3)如圖②,過(guò)點(diǎn)的直線(xiàn)交軸于點(diǎn),且軸,點(diǎn)是拋物線(xiàn)上,之間的一個(gè)動(dòng)點(diǎn),直線(xiàn),與分別交于,,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),是否為定值?若是,試求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意一個(gè)三位數(shù)n,如果n滿(mǎn)足各個(gè)數(shù)位上的數(shù)字互不相同,且都不為零,那么稱(chēng)這個(gè)數(shù)為“相異數(shù)”,將一個(gè)“相異數(shù)”任意兩個(gè)數(shù)位上的數(shù)字對(duì)調(diào)后可以得到三個(gè)不同的新三位數(shù),把這三個(gè)新三位數(shù)的和與111的商記為F(n).例如n=123,對(duì)調(diào)百位與十位上的數(shù)字得到213,對(duì)調(diào)百位與個(gè)位上的數(shù)字得到321,對(duì)調(diào)十位與個(gè)位上的數(shù)字得到132,這三個(gè)新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計(jì)算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k=,當(dāng)F(s)+F(t)=18時(shí),求k的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(教材呈現(xiàn))下圖是華師版九年級(jí)上冊(cè)數(shù)學(xué)教材第103—104頁(yè)的部分內(nèi)容.
定理證明:請(qǐng)根據(jù)教材圖24.2.2的提示,結(jié)合圖①完成直角三角形的性質(zhì):“直角三角形斜邊上的中線(xiàn)等于斜邊的一半”的證明.
定理應(yīng)用:如圖②,在中,,垂足為點(diǎn)(點(diǎn)在上),是邊上的中線(xiàn),垂直平分.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小麗和哥哥小明分別從家和圖書(shū)館同時(shí)出發(fā),沿同一條路相向而行,小麗開(kāi)始跑步,遇到哥哥后改為步行,到達(dá)圖書(shū)館恰好用35分鐘,小明勻速騎自行車(chē)直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程y(m)與各自離開(kāi)出發(fā)的時(shí)間x(min)之間的函數(shù)圖象如圖所示:
(1)求兩人相遇時(shí)小明離家的距離;
(2)求小麗離距離圖書(shū)館500m時(shí)所用的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)春市對(duì)全市各類(lèi)(A型、B型、C型.其它型)校車(chē)共848輛進(jìn)行環(huán)保達(dá)標(biāo)普查,普查結(jié)果繪制成如下條形統(tǒng)計(jì)圖:
(1)求全市各類(lèi)環(huán)保不達(dá)標(biāo)校車(chē)的總數(shù);
(2)求全市848輛校車(chē)中環(huán)保不達(dá)標(biāo)校車(chē)的百分比;
(3)規(guī)定環(huán)保不達(dá)標(biāo)校車(chē)必須進(jìn)行維修,費(fèi)用為:A型500元/輛,B型1000元/輛,C型600元/輛,其它型300元/輛,求全市需要進(jìn)行維修的環(huán)保不達(dá)標(biāo)校車(chē)維修費(fèi)的總和;
(4)若每輛校車(chē)乘坐40名學(xué)生,那么一次性維修全部不達(dá)標(biāo)校車(chē)將會(huì)影響全市80000名學(xué)生乘校車(chē)上學(xué)的百分比是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若此方程的兩實(shí)數(shù)根x1,x2滿(mǎn)足x12+x22=11,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半徑為1,圓心角為60°,則圖中陰影部分的面積是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com