【題目】已知點(diǎn)M(-3,0),點(diǎn)N 是點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn),點(diǎn)A是函數(shù)y= -x+1 圖象上的一點(diǎn),若△AMN是直角三角形,則點(diǎn)A的坐標(biāo)為_______
【答案】(-3, 4),(3, -2)()或()
【解析】
分別過(guò)點(diǎn)M、N作x軸垂線與直線交點(diǎn)即為所求,由M、N點(diǎn)坐標(biāo)可得點(diǎn)A坐標(biāo);在直線上取一點(diǎn)(x,-x+1),根據(jù)AM2+AN2=MN2列出關(guān)于x的方程,解方程可得第三種情況下點(diǎn)A的坐標(biāo).
解:①如圖,過(guò)點(diǎn)M(-3,0)作x軸垂線交直線y=-x+1于點(diǎn)A1,則A1的坐標(biāo)為(-3,4);
②過(guò)點(diǎn)N(3,0)作x軸垂線交直線y=-x+1于點(diǎn)A2,則A2的坐標(biāo)為(3,-2);
③設(shè)直線y=-x+1上的點(diǎn)A3坐標(biāo)為(x,-x+1),
根據(jù)題意,A3M2+A3N2=MN2,即(-3-x)2+(x-1)2+(3-x)2+(x-1)2=62,
整理,得:x2-4x-4=0,
解得:,
當(dāng)時(shí),;
當(dāng)時(shí),;
∴點(diǎn)A3的坐標(biāo)為()或(),
故答案為:(-3, 4),(3, -2)()或().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)B在x軸的正半軸上,D(0,8),將矩形OBCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.
(1)若圖1中的點(diǎn) P 恰好是CD邊的中點(diǎn),求∠AOB的度數(shù).
(2)如圖1,已知折痕與邊BC交于點(diǎn)A,若OD=2CP,求點(diǎn)A的坐標(biāo).
(3)如圖2,在(2)的條件下,擦去折痕AO,線段AP,連接BP,動(dòng)點(diǎn)M在線段OP上(點(diǎn)M與P,O不重合),動(dòng)點(diǎn)N在線段OB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E,試問(wèn)當(dāng)點(diǎn)M,N在移動(dòng)過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?
若變化,說(shuō)明理由;若不變,求出線段EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期三個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查中,張老師一共調(diào)查了 名同學(xué),其中C類女生有 名,D類男生有 名;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連接EF、EO,若DE=2,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠ACB =90°,∠CAB= 30°,△ABD是等邊三角形. 如圖2,將四邊形ACBD折疊,使D與C重合,EF為折痕,則∠ACE的正弦值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MAN=60°,點(diǎn)B在射線AM上,AB=4,點(diǎn)P為直線AN上一動(dòng)點(diǎn),以BP為邊作等邊三角形BPQ(點(diǎn)B,P,Q按順時(shí)針排列),點(diǎn)O是△BPQ的外心.
(1)如圖1,當(dāng)OB⊥AM時(shí),點(diǎn)O________∠MAN的平分線上(填“在”或“不在”);
(2)求證:當(dāng)點(diǎn)P在射線AN上運(yùn)動(dòng)時(shí),總有點(diǎn)O在∠MAN的平分線;
(3)當(dāng)點(diǎn)P在射線AN上運(yùn)動(dòng)(點(diǎn)P與點(diǎn)A不重合)時(shí),AO與BP交于點(diǎn)C,設(shè)AP=m,用m表示AC·AO;
(4)若點(diǎn)D在射線AN上,AD=2,圓I為△ABD的內(nèi)切圓.當(dāng)△BPQ的邊BP或BQ與圓I相切時(shí),請(qǐng)直接寫(xiě)出點(diǎn)A與點(diǎn)O的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)產(chǎn)品公司以元的成本收購(gòu)了某種農(nóng)產(chǎn)品噸,目前可以以元/噸的價(jià)格直接售出.而該公司對(duì)這批農(nóng)產(chǎn)品有以下兩種處理方式可供選擇:
方式一:公司可將部分農(nóng)產(chǎn)品直接以元/噸的價(jià)格售出,剩下的全部加工成半成品出售(加工成本忽略不計(jì)),每噸該農(nóng)產(chǎn)品可以加工得到噸的半成品,每噸半成品的售價(jià)為元.
方式二:公司將該批農(nóng)產(chǎn)品全部?jī)?chǔ)藏起來(lái),這樣每星期會(huì)損失噸,且每星期需支付各種費(fèi)用元,但同時(shí)每星期每噸的價(jià)格將上漲元.
(1)若該公司選取方式一處理該批農(nóng)產(chǎn)品,最終獲得了的利潤(rùn)率,求該公司直接銷售了多少噸農(nóng)產(chǎn)品?
(2)若該公司選取方式二處理該批農(nóng)產(chǎn)品,最終獲利1元,求該批農(nóng)產(chǎn)品儲(chǔ)藏了多少個(gè)星期才出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)為二次函數(shù)圖象的頂點(diǎn),直線分別交軸的負(fù)半軸和軸于點(diǎn),點(diǎn).
(1)若二次函數(shù)圖象經(jīng)過(guò)點(diǎn),求二次函數(shù)的解析式.
(2)如圖,若點(diǎn)坐標(biāo)為,且點(diǎn)在內(nèi)部(不包含邊界).
①求的取值范圍;
②若點(diǎn),都在二次函數(shù)圖象上,試比較與的大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“停課不停學(xué)”期間,某校數(shù)學(xué)興趣小組對(duì)本校同學(xué)觀看教學(xué)視頻所使用的工具進(jìn)行了調(diào)查,并從中隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行分析,將分析結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)表與統(tǒng)計(jì)圖.
工具 | 人數(shù) | 頻率 |
手機(jī) | 44 | a |
平板 | b | 0.2 |
電腦 | 80 | c |
電視 | 20 | d |
不確定 | 16 | 0.08 |
請(qǐng)根據(jù)上述信息回答下列問(wèn)題:
(1)所抽取出來(lái)的同學(xué)共 人,表中a= ,b= ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校觀看教學(xué)視頻的學(xué)生總?cè)藬?shù)為2500人,則使用電腦的學(xué)生人數(shù)約 人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com