如圖,分別以直角三角形三邊向外作三個半圓,若S1=30,S2=40,則S3=   
【答案】分析:根據(jù)勾股定理以及圓面積公式,可以證明:S1+S2=S3.故S3=70.
解答:解:設直角三角形三邊分別為a、b、c,如圖所示:
則S1=π(2=,S2=π(2=,S3=π(2=
因為a2+b2=c2,所以+=
即S1+S2=S3
所以S3=70.
點評:注意發(fā)現(xiàn)此圖中的結(jié)論:S1+S2=S3
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形OABC,點P在邊OA上(不與端點重合),點Q在邊CO上(不與端點重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請寫出表示這三個三角形相似的式子,并探究此時線段OQ、QB、BA之間的數(shù)量關系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請重新寫出表示這三個三角形相似的式子,并證明AB:OA=2
3
:3.
(3)在(1)中,若OA=8
2
,OC=8,OP=
2
CQ.以矩形OABC的兩邊OA、OC所在的直線分別為x軸和y軸,建立平面直角坐標系,如圖(3),若某拋物線頂點為P,點B在拋物線上.
①求此拋物線的解析式.
②過線段BP上一動點M(點M與點P、B不重合),作y軸的平行線交拋物線于點N,若記點M的橫坐標為m,試求線段MN的長L與m之間的函數(shù)關系式,畫出該函數(shù)的示意圖,并指出m取何值時,L有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知矩形OABC,點P在邊OA上(不與端點重合),點Q在邊CO上(不與端點重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請寫出表示這三個三角形相似的式子,并探究此時線段OQ、QB、BA之間的數(shù)量關系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請重新寫出表示這三個三角形相似的式子,并證明AB:OA=2數(shù)學公式:3.
(3)在(1)中,若OA=8數(shù)學公式,OC=8,OP=數(shù)學公式CQ.以矩形OABC的兩邊OA、OC所在的直線分別為x軸和y軸,建立平面直角坐標系,如圖(3),若某拋物線頂點為P,點B在拋物線上.
①求此拋物線的解析式.
②過線段BP上一動點M(點M與點P、B不重合),作y軸的平行線交拋物線于點N,若記點M的橫坐標為m,試求線段MN的長L與m之間的函數(shù)關系式,畫出該函數(shù)的示意圖,并指出m取何值時,L有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年安徽省中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

如圖,已知矩形OABC,點P在邊OA上(不與端點重合),點Q在邊CO上(不與端點重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請寫出表示這三個三角形相似的式子,并探究此時線段OQ、QB、BA之間的數(shù)量關系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請重新寫出表示這三個三角形相似的式子,并證明AB:OA=2:3.
(3)在(1)中,若OA=8,OC=8,OP=CQ.以矩形OABC的兩邊OA、OC所在的直線分別為x軸和y軸,建立平面直角坐標系,如圖(3),若某拋物線頂點為P,點B在拋物線上.
①求此拋物線的解析式.
②過線段BP上一動點M(點M與點P、B不重合),作y軸的平行線交拋物線于點N,若記點M的橫坐標為m,試求線段MN的長L與m之間的函數(shù)關系式,畫出該函數(shù)的示意圖,并指出m取何值時,L有最大值,最大值是多少?

查看答案和解析>>

同步練習冊答案