【題目】直線AB:y=-x-b分別與x,y軸交于A(6,0)、B兩點(diǎn),過(guò)點(diǎn)B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線BC的解析式;
(3)直線EF:y=2x-k(k≠0)交AB于E,交BC于點(diǎn)F,交x軸于點(diǎn)D,是否存在這樣的直線EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) B點(diǎn)坐標(biāo)為:(0,6).(2) y=3x+6.(3) k=-2.4
【解析】
試題(1)將點(diǎn)A(6,0)代入直線AB的解析式,可得b的值,繼而可得點(diǎn)B的坐標(biāo);
(2)設(shè)BC的解析式是y=ax+c,根據(jù)B點(diǎn)的坐標(biāo),求出C點(diǎn)坐標(biāo),把B,C點(diǎn)的坐標(biāo)分別代入求出a和c的值即可;
(3)過(guò)E、F分別作EM⊥x軸,FN⊥x軸,則∠EMD=∠FND=90°,有題目的條件證明△NFD≌△EDM,進(jìn)而得到FN=ME,聯(lián)立直線AB:y=-x-b和y=2x-k求出交點(diǎn)E和F的縱坐標(biāo),再利用等底等高的三角形面積相等即可求出k的值;
試題解析:(1)將點(diǎn)A(6,0)代入直線AB解析式可得:0=-6-b,
解得:b=-6,
∴直線AB 解析式為y=-x+6,
∴B點(diǎn)坐標(biāo)為:(0,6).
(2)∵OB:OC=3:1,
∴OC=2,
∴點(diǎn)C的坐標(biāo)為(-2,0),
設(shè)BC的解析式是y=ax+c,代入得;,
解得:,
∴直線BC的解析式是:y=3x+6.
(3)過(guò)E、F分別作EM⊥x軸,FN⊥x軸,則∠EMD=∠FND=90°.
∵S△EBD=S△FBD,
∴DE=DF.
又∵∠NDF=∠EDM,
∴△NFD≌△EDM,
∴FN=ME,
聯(lián)立得,
解得:yE=-k+4,
聯(lián)立,
解得:yF=-3k-12,
∵FN=-yF,ME=yE,
∴3k+12=-k+4,
∴k=-2.4;
當(dāng)k=-2.4時(shí),存在直線EF:y=2x-2.4,使得S△EBD=S△FBD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與雙曲線交于兩點(diǎn),且點(diǎn)的橫坐標(biāo)為.
(1)求的值;
(2)若雙曲線上一點(diǎn)的縱坐標(biāo)為8,求的面積;
(3)過(guò)原點(diǎn)的另一條直線交雙曲線于兩點(diǎn)(點(diǎn)在第一象限),若由點(diǎn)為頂點(diǎn)組成的四邊形面積為,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在地面上有兩根等長(zhǎng)的立柱AB,CD,它們之間懸掛了一根拋物線形狀的繩子,按照?qǐng)D中的直角坐標(biāo)系,這條繩子可以用y= x2﹣ x+3表示
(1)求這條繩子最低點(diǎn)離地面的距離;
(2)現(xiàn)由于實(shí)際需要,要在兩根立柱之間再加一根立柱EF對(duì)繩子進(jìn)行支撐(如圖②),已知立柱EF到AB距離為3m,兩旁的繩子也是拋物線形狀,且立柱EF左側(cè)繩子的最低點(diǎn)到EF的距離為1m,到地面的距離為1.8m,求立柱EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】南山植物園中現(xiàn)有A、B兩個(gè)園區(qū),已知A園區(qū)為長(zhǎng)方形,長(zhǎng)為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長(zhǎng)為(x+3y)米.
(1)請(qǐng)用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡(jiǎn);
(2)現(xiàn)根據(jù)實(shí)際需要對(duì)A園區(qū)進(jìn)行整改,長(zhǎng)增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長(zhǎng)比寬多350米,且整改后兩園區(qū)的周長(zhǎng)之和為980米.
①求x、y的值;
②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費(fèi)用與吸引游客的收益如表:
求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC為弦,過(guò)圓心O作OD⊥BC交弧BC于點(diǎn)D,連接DC,若∠DCB=32°,則∠BAC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點(diǎn),以O(shè)為圓心的半圓與AB邊相切于點(diǎn)D,與AC、BC邊分別交于點(diǎn)E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD= .
(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游景點(diǎn)的門票價(jià)格如下表:
購(gòu)票人數(shù)(單位人) | 1﹣50 | 51﹣100 | 100以上 |
每人門票價(jià)(單位元) | 80 | 75 | 70 |
某旅行社計(jì)劃帶甲、乙兩個(gè)旅行團(tuán)共100多人計(jì)劃去游覽該景點(diǎn),其中甲旅行團(tuán)人數(shù)少于50人,乙旅行團(tuán)人數(shù)有50 多人但不足100人,如果兩旅行團(tuán)都以各自團(tuán)體為單位單獨(dú)購(gòu)票,則一共支付7965元;如果兩旅行團(tuán)聯(lián)合起來(lái)作為一個(gè)團(tuán)體購(gòu)票,則只管花費(fèi)7210元.間兩旅行團(tuán)各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)部一個(gè)動(dòng)點(diǎn),∠APB=120°,⊙O是△APB的外接圓.AP,BP的延長(zhǎng)線分別交BC,AC于D,E.
(1)求證:CA,CB是⊙O的切線;
(2)已知AB=6,G在BC上,BG=2,當(dāng)PG取得最小值時(shí),求PG的長(zhǎng)及∠BGP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】西瓜和甜瓜是新疆特色水果,小明的媽媽先購(gòu)買了2千克西瓜和3千克甜瓜,共花費(fèi)9元;后又購(gòu)買了1千克西瓜和2千克甜瓜,共花費(fèi)5.5元.(每次兩種水果的售價(jià)都不變)
(1)求兩種水果的售價(jià)分別是每千克多少元?
(2)如果還需購(gòu)買兩種水果共12千克,要求甜瓜的數(shù)量不少于西瓜數(shù)量的兩倍,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買方案,使所需總費(fèi)用最低.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com