如圖,△ABC中,∠B=2∠A,AB=2BC.求證:∠C=90°.

證明:作∠ABC的平分線BD交AC于點(diǎn)D,過D作DE⊥AB于點(diǎn)E,
∵BD平分∠ABC,
∴∠ABD=∠CBD.
∵∠ABC=2∠A,
∴∠ABD=∠A.
∴△DAB是等腰三角形.
又∵DE⊥AB,
∴BE=AB.
∵BC=AB,
∴BE=BC.
∵BD=BD,
∴△BED≌△BCD.
∴∠C=∠BED=90°.
分析:作∠ABC的平分線BD交AC于點(diǎn)D,過D作DE⊥AB于點(diǎn)E,構(gòu)造直角三角形和等腰三角形,由∠ABD=∠CBD,∠ABC=2∠A得到∠ABD=∠A?△DAB是等腰三角形,由SAS證得△BED≌△BCD,從而得到結(jié)論.
點(diǎn)評:本題考查了等腰三角形的判定和性質(zhì)及直角三角形全等三角形的判定和性質(zhì);正確作出輔助線是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案