【題目】如圖,已知Rt△ABD中,∠A=90°,將斜邊BD繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)至BC,使BC∥AD,過點(diǎn)C作CE⊥BD于點(diǎn)E.
(1)求證:△ABD≌△ECB;
(2)若∠ABD=30°,BE=3,求弧CD的長.

【答案】
(1)證明:∵∠A=90°,CE⊥BD,

∴∠A=∠BEC=90°.

∵BC∥AD,

∴∠ADB=∠EBC.

∵將斜邊BD繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)至BC,

∴BD=BC.

在△ABD和△ECB中,

∴△ABD≌△ECB


(2)解:∵△ABD≌△ECB,

∴AD=BE=3.

∵∠A=90°,∠BAD=30°,

∴BD=2AD=6,

∵BC∥AD,

∴∠A+∠ABC=180°,

∴∠ABC=90°,

∴∠DBC=60°,

∴弧CD的長為 =2π


【解析】(1)因?yàn)檫@兩個(gè)三角形是直角三角形,根據(jù)旋轉(zhuǎn)的性質(zhì)得出BC=BD,由AD∥BC推出∠ADB=∠EBC,從而能證明△ABD≌△ECB;(2)由全等三角形的性質(zhì)得出AD=BE=3.根據(jù)30°角所對(duì)的直角邊等于斜邊的一半得出BD=2AD=6,根據(jù)平行線的性質(zhì)求出∠DBC=60°,再代入弧長計(jì)算公式求解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用弧長計(jì)算公式和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握若設(shè)⊙O半徑為R,n°的圓心角所對(duì)的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了盡快實(shí)施脫貧致富奔小康宏偉意圖,某縣扶貧工作隊(duì)為朝陽溝村購買了一批蘋果樹苗和梨樹苗,已知一棵蘋果樹苗比一棵梨樹苗貴2元,購買蘋果樹苗的費(fèi)用和購買梨樹苗的費(fèi)用分別是3500元和2500元.

(1)若兩種樹苗購買的棵數(shù)一樣多,求梨樹苗的單價(jià);

(2)若兩種樹苗共購買1100棵,且購買兩種樹苗的總費(fèi)用不超過6000元,根據(jù)(1)中兩種樹苗的單價(jià),求梨樹苗至少購買多少棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售A、B兩種不同型號(hào)的電風(fēng)扇,每種型號(hào)電風(fēng)扇的購買單價(jià)分別為每臺(tái)310元,460元.
(1)若某單位購買A,B兩種型號(hào)的電風(fēng)扇共50臺(tái),且恰好支出20000元,求A,B兩種型號(hào)電風(fēng)扇各購買多少臺(tái)?
(2)若購買A,B兩種型號(hào)的電風(fēng)扇共50臺(tái),且支出不超過18000元,求A種型號(hào)電風(fēng)扇至少要購買多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖填空:

(1)∵∠1=∠A(已知),

_______________________________;

(2)∵∠1=∠D(已知),

________________________________;

(3)∵______=∠F(已知),

ACDF______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.點(diǎn)P是△ABC內(nèi)的一點(diǎn),連接PC,以PC為直角邊在PC的右上方作等腰直角三角形PCD.連接AD,若AD∥BC,且四邊形ABCD的面積為12,則BP的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中.AB=ACBAC=90EAC邊上的一點(diǎn),延長BAD,使AD=AE,連接DE,CD.

(l)圖中是否存在兩個(gè)三角形全等?如果存在請(qǐng)寫出哪兩個(gè)三角形全等,并且證明;如果不存在,請(qǐng)說明理由;

(2)若∠CBE=30,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個(gè)問題:

計(jì)算代數(shù)式(其中x≠0)的值后填入下表.并根據(jù)表格所反映出的(其中x≠0)的值與x之間的變化規(guī)律進(jìn)行探究.

x

……

0.25

0.5

1

10

100

1000

10000

……

……

……

下面是小東計(jì)算代數(shù)式(其中x≠0)的值后填入表格,并根據(jù)表格進(jìn)行探究的過程,請(qǐng)補(bǔ)充完整:

x

……

0.25

0.5

1

10

100

1000

10000

……

……

2

1

……

(1)上表是(其中x≠0)與x的幾組對(duì)應(yīng)值.直接寫出x=10時(shí),求代數(shù)式的值;

(2)隨著x值的增大,代數(shù)式的值有何變化回答增大減少”);

(3)當(dāng)x值無限增大時(shí),代數(shù)式的值無限趨近于一個(gè)數(shù),這個(gè)數(shù)是多少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法: ①2a+b=0;
②當(dāng)﹣1≤x≤3時(shí),y<0;
③若(x1 , y1)、(x2 , y2)在函數(shù)圖象上,當(dāng)x1<x2時(shí),y1<y2
④9a+3b+c=0
其中正確的是(

A.①②④
B.①②③
C.①④
D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A是雙曲線y= 在第一象限的分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊△ABC,點(diǎn)C在第四象限.隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y= (k<0)上運(yùn)動(dòng),則k的值是

查看答案和解析>>

同步練習(xí)冊(cè)答案