已知a,b,c為△ABC三邊,且滿足a2+b2+c2+338=10a+24b+26c.試判斷△ABC的形狀.

解:由已知得
(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0
(a-5)2+(b-12)2+(c-13)2=0
由于(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.
所以a-5=0,得a=5;
b-12=0,得b=12;
c-13=0,得c=13.
又因?yàn)?32=52+122,即a2+b2=c2
所以△ABC是直角三角形.
分析:把已知條件寫成三個(gè)完全平方式的和的形式,再由非負(fù)數(shù)的性質(zhì)求得三邊,根據(jù)勾股定理的逆定理即可判斷△ABC的形狀.
點(diǎn)評(píng):本題考查勾股定理的逆定理的應(yīng)用.綜合考查了非負(fù)數(shù)的性質(zhì)和完全平方公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南昌)已知,紙片⊙O的半徑為2,如圖1,沿弦AB折疊操作.
(1)①折疊后的
AB
所在圓的圓心為O′時(shí),求O′A的長(zhǎng)度;
     ②如圖2,當(dāng)折疊后的
AB
經(jīng)過(guò)圓心為O時(shí),求
AOB
的長(zhǎng)度;
     ③如圖3,當(dāng)弦AB=2時(shí),求圓心O到弦AB的距離;
(2)在圖1中,再將紙片⊙O沿弦CD折疊操作.
①如圖4,當(dāng)AB∥CD,折疊后的
AB
CD
所在圓外切于點(diǎn)P時(shí),設(shè)點(diǎn)O到弦AB、CD的距離之和為d,求d的值;
②如圖5,當(dāng)AB與CD不平行,折疊后的
AB
CD
所在圓外切于點(diǎn)P時(shí),設(shè)點(diǎn)M為AB的中點(diǎn),點(diǎn)N為CD的中點(diǎn),試探究四邊形OMPN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一圓錐的母線長(zhǎng)為12,底面半徑為4,則該圓錐的側(cè)面積是
48π
48π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知兩圓的半徑分別為5cm、8cm,且它們的圓心距為8cm,則兩圓的位置關(guān)系為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•貴陽(yáng))已知:如圖,CD為⊙O的直徑,CD⊥AB,M為垂足,DM=2cm,弦AB=8cm,則⊙O的半徑為
5
5
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•岳池縣模擬)如圖,在平面直角坐標(biāo)系xoy中,已知拋物線頂點(diǎn)N的坐標(biāo)為(-1.-
92
),此拋物線交y軸于B(0,-4),交x軸于A、C兩點(diǎn)且A點(diǎn)在C點(diǎn)左邊.
(1)求拋物線解析式及A、C兩點(diǎn)的坐標(biāo).
(2)如果點(diǎn)M為第三象限內(nèi)拋物線上一個(gè)動(dòng)點(diǎn)且它的橫坐標(biāo)為m,設(shè)△AMB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式并求出S的最大值.
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=x上的動(dòng)點(diǎn),判斷有幾個(gè)位置使得以點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案