【題目】如圖,已知A4,0),B33),以OAAB為邊作OABC,則若一個反比例函數(shù)的圖象經(jīng)過C點(diǎn),則這個反比例函數(shù)的表達(dá)式為_____

【答案】y=﹣.

【解析】

BBEx軸,過CCDx軸,可得∠BEA=∠CDO90°,由四邊形ABCO為平行四邊形,得到對邊平行且相等,利用兩直線平行得到一對同位角相等,利用AAS得到三角形ABE與三角形OCD全等,利用全等三角形對應(yīng)邊相等得到AE=OD,BE=CD,確定出C的坐標(biāo),利用待定系數(shù)法確定出反比例函數(shù)的解析式,即可得出答案.

BBEx軸,過CCDx軸,可得∠BEA=∠CDO90°,

∵四邊形ABCO為平行四邊形,

ABOCABOC,

∴∠BAE=∠COD,

在△ABE和△OCD中,

∴△ABE≌△OCDAAS),

BECD,AEOD,

A4,0),B3,3),

OA4BEOE3,

AEOAOE431

ODAE1,CDBE3

C(﹣1,3),

設(shè)過點(diǎn)C的反比例解析式為y,

C(﹣1,3)代入得:k=﹣3

則反比例解析式為y=﹣

故答案為:y=﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從如圖所示的二次函數(shù)的圖象中,觀察得出下面五條信息:①;②;③;④;⑤.你認(rèn)為其中正確信息的個數(shù)為(

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,是中線,,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON=20°,A、B分別為射線OMON上兩定點(diǎn),且OA=2OB=4,點(diǎn)P、Q分別為射線OM、ON兩動點(diǎn),當(dāng)P、Q運(yùn)動時,線段AQ+PQ+PB的最小值是( 。

A.3B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某新型高科技商品,每件的售價比進(jìn)價多6元,5件的進(jìn)價相當(dāng)于4件的售價,每天可售出200件,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件商品漲價1元,每天就會少賣5件.

1)該商品的售價和進(jìn)價分別是多少元?

2)設(shè)每天的銷售利潤為w元,每件商品漲價x元,則當(dāng)售價為多少元時,該商品每天的銷售利潤最大,最大利潤為多少元?

3)為增加銷售利潤,營銷部推出了以下兩種銷售方案:方案一:每件商品漲價不超過8元;方案二:每件商品的利潤至少為24元,請比較哪種方案的銷售利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一批 30 瓦的 LED 燈泡和普通白熾燈泡進(jìn)行銷售,其進(jìn)價與標(biāo)價如下表:

LED 燈泡

普通白熾燈泡

進(jìn)價(元)

45

25

標(biāo)價(元)

60

30

(1)該商場購進(jìn)了 LED 燈泡與普通白熾燈泡共 300 個,LED 燈泡按標(biāo)價進(jìn)行銷售,而普通 白熾燈泡打九折銷售,當(dāng)銷售完這批燈泡后可獲利 3 200 元,求該商場購進(jìn) LED 燈泡與 普通白熾燈泡的數(shù)量分別為多少個?

(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進(jìn)這兩種燈泡 120 個, 在不打折的情況下,請問如何進(jìn)貨,銷售完這批燈泡時獲利最多且不超過進(jìn)貨價的 30%, 并求出此時這批燈泡的總利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,20173月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.

(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?

(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成20176月份的快遞投遞任務(wù)?如果不能,請問至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 的邊長為 2,點(diǎn) E,F 分別在邊AD,CD 上,若EBF 45 ,則EDF 的周長等于_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABC=ADC=90°,對角線AC,BD交于點(diǎn)O,DE平分∠ADCBC于點(diǎn)E,連接OE.

(1)求證:四邊形ABCD是矩形;

(2)若AB=2,求OEC的面積.

查看答案和解析>>

同步練習(xí)冊答案