【題目】如圖,在長度為1個(gè)單位長度的小正方形組成的長方形中,點(diǎn)A,B,C在小正方形的頂點(diǎn)上.

1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△ABC′;

2)計(jì)算△ABC的面積;

3)在直線l上找一點(diǎn)P,使PB+PC的長最短.

【答案】1)詳見解析;(25.5;(3)詳見解析.

【解析】

1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)BC關(guān)于直線l的對稱點(diǎn)B′、C′的位置,然后與點(diǎn)A順次連接即可;

2)利用△ABC所在的矩形的面積減去四周三個(gè)小直角三角形的面積,列式計(jì)算即可得解;

3)根據(jù)軸對稱確定最短路線問題,連接B′C與直線l的交點(diǎn)即為所求點(diǎn)P

解:(1△AB′C′如圖所示;

2△ABC的面積=3×4×2×3×1×4×1×3,

12321.5,

126.5,

5.5;

3)點(diǎn)P如圖所示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究

(1)如圖①,在ABC 中,∠B=30°,E AB 邊上的點(diǎn),過點(diǎn) E EFBC F,則的值為 .

2)如圖②,在四邊形 ABCD 中,AB=BC=6,ABC=60°,對角線 BD 平分∠ABC,點(diǎn)E 是對角線 BD 上一點(diǎn),求 AE+ BE的最小值.

問題解決

3)如圖③,在平面直角坐標(biāo)系中,直線 y -x 4 分別于 x 軸,y 軸交于點(diǎn) A、B,點(diǎn) P 為直線 AB 上的動(dòng)點(diǎn),以 OP 為邊在其下方作等腰 RtOPQ 且∠POQ=90°.已知點(diǎn)C0,-4),點(diǎn) D3,0)連接 CQ、DQ,那么DQ CQ是否存在最小值,若存在求出其最小值及此時(shí)點(diǎn) P 的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形 ABCD 中,兩條鄰邊長分別為35,∠BAD與∠ABC的平分線交于點(diǎn)E,點(diǎn)F CD的中點(diǎn),連接EF,則EF=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)ykx經(jīng)過點(diǎn)A,點(diǎn)A在第四象限,過點(diǎn)AAHx軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3

1)求正比例函數(shù)的表達(dá)式;

2)在x軸上能否找到一點(diǎn)M,使△AOM是等腰三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況.(售價(jià)不低于進(jìn)價(jià)).請根據(jù)小麗提供的信息,解答小華和小明提出的問題.

認(rèn)真閱讀上面三位同學(xué)的對話,請根據(jù)小麗提供的信息.

(1)解答小華的問題;

(2)解答小明的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中, AB =AC=24 cm, BC=16cm,AD= BD.如果點(diǎn)P在線段BC上以 2 cm/s 的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn) Q在線段CA上以v cm/s 的速度由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),那么當(dāng)△BPD 與△CQP全等時(shí),v =

A.3B.4C.2 4D.23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸相交于點(diǎn)、,與軸相交于點(diǎn)

求該函數(shù)的表達(dá)式;

點(diǎn)為該函數(shù)在第一象限內(nèi)的圖象上一點(diǎn),過點(diǎn),垂足為點(diǎn),連接

求線段的最大值;

若以點(diǎn)、、為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD,BE分別是∠BAC,∠ABC的角平分線.

1)若∠C70°,∠BAC60°,則∠BED的度數(shù)是 ;若∠BED50°,則∠C的度數(shù)是

2)探究∠BED與∠C的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.

①當(dāng)α為多少度時(shí),ABDC?

②當(dāng)旋轉(zhuǎn)到圖③所示位置時(shí),α為多少度?

③連接BD,當(dāng)0°<α≤45°時(shí),探求∠DBC′+CAC′+BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

同步練習(xí)冊答案