【題目】如圖,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對應點C′的坐標為(4,1)
(1)A′、B′兩點的坐標分別為A′ 、B′ ;
(2)作出△ABC平移之后的圖形△A′B′C′;
(3)求△A′B′C′的面積.
【答案】(1)A′(3,5)、B′(1,2);(2)作圖見解析;(3)5.5.
【解析】試題分析:(1)由點C(-1,-3)與點C′(4,1)是對應點,得出平移規(guī)律為:向右平移5個單位,向上平移4個單位,按平移規(guī)律即可寫出所求的點的坐標;
(2)按平移規(guī)律作出A、B的對應點A′,B′,順次連接A′、B′、C′,即可得到△A′B′C′;
(3)利用三角形所在的矩形的面積減去四周三個小直角三角形的面積即可求解.
試題解析:(1)∵△A′B′C′是△ABC平移之后得到的圖象,并且C(-1,-3)的對應點C′的坐標為(4,1),
∴平移前后對應點的橫坐標加5,縱坐標加4,
∴△ABC先向右平移5個單位,再向上平移4個單位得到△A′B′C′,
∵A(-2,1),B(-4,-2),
∴A′(3,5)、B′(1,2);
(2)△A′B′C′如圖所示;
科目:初中數學 來源: 題型:
【題目】【問題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.
【探究展示】
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.
【拓展延伸】
(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結論是否成立?請分別作出判斷,不需要證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】AB∥CD,直線a交AB、CD分別于點E、F,點M在EF上,P是直線CD上的一個動點,(點P不與F重合)
(1)當點P在射線FC上移動時,∠FMP+∠FPM =∠AEF成立嗎?請說明理由。
(2)當點P在射線FD上移動時,∠FMP+∠FPM與∠AEF有什么關系?并說明你的理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】廉貽中學為每個學生編號,設定末尾用1表示男生,用2表示女生。如果152132表示“2015年入學的2班13號的同學,是位女生”,那么今年入學的3班19號男生的編號是_______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com