如圖,一條拋物線經(jīng)過原點和點C(8,0),A、B是該拋物線上的兩點,AB∥x軸,OA=5,AB=2.點E在線段OC上,作∠MEN=∠AOC,使∠MEN的一邊始終經(jīng)過點A,另一邊交線段BC于點F,連接AF.
(1)求拋物線的解析式;
(2)當點F是BC的中點時,求點E的坐標;
(3)當△AEF是等腰三角形時,求點E的坐標.
(1)y=-x2+x;(2)(,0);(3)(3,0)、(2,0)、(,0).
【解析】
試題分析:(1)根據(jù)題意可設該拋物線的解析式為:y=ax(x-8)(a≠0).然后將點A或點B的坐標代入求值即可;
(2)由相似三角形△AOE∽△ECF的對應邊成比例求得線段OE的長度,則易求點E的坐標;
(3)需要分類討論:當AE=EF、AF=EF和AE=AF時,分別求得點E的坐標.
試題解析:(1)拋物線中,AB∥OC,由對稱性可知有等腰梯形AOCB.
而OA=5,AB=2,OC=8
則A(3,4),B(5,4)
拋物線的解析式是y=-x2+x
(2)可以證明△AOE∽△ECF
則,不妨設E(x,0),其中0≤x≤8,
由,整理得x2-8x+12.5=0,解得
從而點E的坐標為(,0)
(3)由(2)中相似還可知AO:EC=AE:EF,若△AEF為等腰三角形,則有三種可能.
①當EA=EF時,有EC=AO=5,∴E(3,0)
②當AE=AF時,作AH⊥EF于H,有AE:EF=5:6
∴EC=AO=6,
∴E(2,0)
③當FA=FE時,同理可得AE:EF=6:5
∴EC=AO=,
∴E(,0)
綜上所述,符合要求的點E有三個.
考點:二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2011年陜西省中考數(shù)學模擬試卷(一)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2009年陜西省中考數(shù)學試卷(副卷)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com