(12分)如圖1,在四邊形ABCD的AB邊上任取一點E(點E不與點A、點B
重合),分別連接ED、EC,可以把四邊形ABCD分成3個三角形.如果其中有2個三角形
相似,我們就把點E叫做四邊形ABCD的AB邊上的相似點;如果這3個三角形都相似,
我們就把點E叫做四邊形ABCD的AB邊上的強相似點.

(1)若圖1中,∠A=∠B=∠DEC=50°,說明點E是四邊形ABCD的AB邊上的相似點;
(2)①如圖2,畫出矩形ABCD的AB邊上的一個強相似點.(要求:畫圖工具不限,不寫畫法,保留畫圖痕跡或有必要的說明.)
②對于任意的一個矩形,是否一定存在強相似點?如果一定存在,請說明理由;如果不一定存在,請舉出反例.
(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,點E是梯形ABCD的AB邊上的一個強相似點,判斷AE與BE的數(shù)量關(guān)系并說明理由.
解:(1)理由:∵∠A=50°,
∴∠ADE+∠DEA=130°.
∵∠DEC=50°,
∴∠BEC+∠DEA=130°.
∴∠ADE=∠BEC. …………………………………………………………1分
∵∠A=∠B,
∴△ADE∽△BEC. …………………………………………………………2分
∴點E是四邊形ABCD的AB邊上的相似點. ……………………………3分
(2)①以CD為直徑畫弧,取該弧與AB的一個交點即為所求.(若不用圓規(guī)畫圖,則必須在圖上標(biāo)注直角符號或?qū)χ苯橇碛姓f明.)………………………5分
②對于任意的一個矩形,不一定存在強相似點,如正方形.(答案不惟一,若學(xué)生畫圖說明也可.) ………………………………………………………6分
(3)第一種情況:
∠A=∠B=∠DEC=90°,∠ADE=∠BEC=∠EDC,
即△ADE∽△BEC∽△EDC.
方法一:
如圖1,延長DE,交CB的延長線于點F,………………………………7分

說明DE=EF,………………………………………………………………8分
說明AE=BE.………………………………………………………………9分
方法二:
如圖2,過點E作EF⊥DC,垂足為F.………………………………7分

因為∠ADE=∠CDE,∠BCE=∠DCE,
所以AE=EF,EF=BE.
所以AE=BE.………………………………………………………………9分
方法三:
由△ADE∽△EDC可得,即AE=.  …………………7分
同理,由△BEC∽△EDC可得,即BE=,……………8分
所以AE=BE.………………………………………………………………9分
第二種情況:
如圖3,∠A=∠B=∠EDC=90°,∠ADE=∠BCE=∠DCE,

即△ADE∽△BCE∽△DCE.
所以∠AED=∠BEC=∠DEC=60°,……………………………………10分
說明AE=DE,BE=CE,DE=CE,
(或說明BE=DE,AE=DE,)
所以AE=BE.
綜上,AE=BE或AE=BE.………………………………………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在平面直角坐標(biāo)系中,拋物線向左平移1個單位,再向下平移4個單位,得到拋物線.所得拋物線與軸交于兩點(點在點的左邊),與軸交于點,頂點為.
(1)求的值;
(2)求直線AC的函數(shù)解析式。
(3)在線段上是否存在點,使相似.若存在,求出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,O是△ABC的重心,AN,CM相交于點O,那么△MON與△AOC的面積的比是_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

由三角形三邊中位線所圍成的三角形的面積是原三角形面積的             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•潼南縣)若△ABC∽△DEF,它們的面積比為4:1,則△ABC與△DEF的相似比為(  )
A.2:1B.1:2
C.4:1D.1:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)已知:如圖,在梯形ABCD中,AD∥BC,∠DCB = 90°,E是AD的中點,點P是BC邊上的動點(不與點B重合),EP與BD相交于點O.
(1)當(dāng)P點在BC邊上運動時,求證:△BOP∽△DOE;
(2)設(shè)(1)中的相似比為,若AD︰BC = 2︰3. 請?zhí)骄浚寒?dāng)k為下列三種情況時,四邊形ABPE是什么四邊形?
①當(dāng)= 1時,是          
②當(dāng)= 2時,是             ;
③當(dāng)= 3時,是                .
請證明= 2時的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011廣西崇左,24,14分)(本小題滿分14分)如圖,在邊長為8的正方形ABCD
中,點OAD上一動點(4<OA<8),以O為圓心,OA的長為半徑的圓交邊CD于點M,連接OM,過點M作圓O的切線交邊BC于點N.
(1)      求證:△ODM∽△MCN;
(2)      設(shè)DM=x,求OA的長(用含x的代數(shù)式表示);
(3)      在點O運動的過程中,設(shè)△CMN的周長為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在中,,,把邊長分別為個正方形依次放入中,請回答下列問題:

(1)按要求填表

1
2
3

 
 
 
(2)第個正方形的邊長       ;
(3)若是正整數(shù),且,試判斷的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分9分)填空或解答:點B、C、E在同一直線上,點A、D在直線CE
的同側(cè),AB=AC,EC=ED,∠BAC=∠CED,直線AE、BD交于點F。
(1)如圖①,若∠BAC=60°,則∠AFB=_________;如圖②,若∠BAC=90°,則∠AFB=_________;
(2)如圖③,若∠BAC=α,則∠AFB=_________(用含α的式子表示);
(3)將圖③中的△ABC繞點C旋轉(zhuǎn)(點F不與點A、B重合),得圖④或圖⑤。
在圖④中,∠AFB與∠α的數(shù)量關(guān)系是________________;
在圖⑤中,∠AFB與∠α的數(shù)量關(guān)系是________________。請你任選其中一個結(jié)論證明。

查看答案和解析>>

同步練習(xí)冊答案