(本題滿分12分)春節(jié)期間,七(1)班的李平、王麗等同學(xué)隨家長一同到某公園游玩,下面是購買門票時(shí),李平與他爸爸的對(duì)話(如圖),試根據(jù)圖中的信息,解答下列問題:

⑴李平他們一共去了幾個(gè)成人,幾個(gè)學(xué)生?

⑵請(qǐng)你幫助算一算,用哪種方式購票更省錢?說明理由。

⑶購?fù)昶焙,李平發(fā)現(xiàn)七⑵班的張明等8名同學(xué)和他們的12名家長共20人也來購票,請(qǐng)你為他們?cè)O(shè)計(jì)出最省的購票方案,并求出此時(shí)的購票費(fèi)用.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 

設(shè)成人人數(shù)為x人,則學(xué)生人數(shù)為(12-x)人,則:由題中所給的票價(jià)單可得:

35x+ 35/2(12-x)=350┉┉3分

解得:x=8

學(xué)生人數(shù)為12-8=4人,成人人數(shù)為8人.┉┉5分

(2)如果買團(tuán)體票,按16人計(jì)算,共需費(fèi)用:35×0.6×16=336元

因?yàn)?36<350,所以,購團(tuán)體票更省錢.┉┉10分

(3)最省的購票方案為:買16人的團(tuán)體票,再買4張學(xué)生票.此時(shí)的購票費(fèi)用為:

16×35×0.6+4×17.5=406元.┉┉12分

 

 【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分,任選一題作答.)
Ⅰ、如圖①,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),邊長為5的正三角形OAB的OA邊在x軸的正半軸上.點(diǎn)C、D同時(shí)從點(diǎn)O出發(fā),點(diǎn)C以1單位長/秒的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)D以2個(gè)單位長/秒的速度沿折線OBA運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.
(1)當(dāng)0<t<
52
時(shí),證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)以點(diǎn)C為中心,將CD所在的直線順時(shí)針旋轉(zhuǎn)60°交AB邊于點(diǎn)E,若以O(shè)、C、E、D為頂點(diǎn)的四邊形是梯形,求點(diǎn)E的坐標(biāo).
Ⅱ、(1)如圖Ⅱ-1,已知△ABC,過點(diǎn)A畫一條平分三角形面積的直線;
(2)如圖Ⅱ-2,已知l1∥l2,點(diǎn)E,F(xiàn)在l1上,點(diǎn)G,H在l2上,試說明△EGO與△FHO面積相等.
(3)如圖Ⅱ-3,點(diǎn)M在△ABC的邊上,過點(diǎn)M畫一條平分三角形面積的直線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)一家計(jì)算機(jī)專買店A型計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降低0.10元,例如,某人買20只計(jì)算器,于是每只降價(jià)0.10×(20-10)=1(元),因此,所買的全部20只計(jì)算器都按每只19元的價(jià)格購買.但是最低價(jià)為每只16元.
【小題1】(1)求一次至少買多少只,才能以最低價(jià)購買?
【小題2】(2)寫出專買店當(dāng)一次銷售xx>10)只時(shí),所獲利潤y元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
【小題3】(3)一天,甲買了46只,乙買了50只,店主卻發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,你能用數(shù)學(xué)知識(shí)解釋這一現(xiàn)象嗎?為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價(jià)每只16元至少提高到多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省啟東市九年級(jí)寒假作業(yè)檢測數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

1.(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,

AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB

=∠MAE.

(下面請(qǐng)你完成余下的證明過程)

2.(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說明理由.

3.(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=            °時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年湖北省荊州市九年級(jí)第二次質(zhì)檢試題數(shù)學(xué)卷 題型:解答題

(本題滿分12分)如圖甲,分別以兩個(gè)彼此相鄰的正方形?OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過A、B、E三點(diǎn)(圓心在x軸上),拋物線y=14x2+bx+c經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),正方形CDEF的面積為1.

1.(1)求B點(diǎn)坐標(biāo);

2.(2)求證:ME是⊙P的切線;

3.(3)設(shè)直線AC與拋物線對(duì)稱軸交于N,Q點(diǎn)是此對(duì)稱軸上不與N點(diǎn)重合的一動(dòng)點(diǎn),①求△ACQ周長的最小值;

②若FQ=t,SACQ=S,直接寫出S與t之間的函數(shù)關(guān)系式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇省鹽城市九年級(jí)上學(xué)期學(xué)情調(diào)查數(shù)學(xué)卷 題型:解答題

(本題滿分12分)某商場購進(jìn)一批單價(jià)為16元日用品,銷售一段時(shí)間后,為了獲得更多利潤,商店決定提高銷售價(jià)格,經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價(jià)格銷售時(shí),每月能賣360件,若按每件25元的價(jià)格銷售時(shí),每月能賣210件,假定每月銷售件數(shù)Y(件)是價(jià)格X(元/件)的一次函數(shù)

1.(1)試求Y 與X之間的關(guān)系式。

2.(2)在商品積壓,且不考慮其它因素的條件下,問銷售價(jià)格定為多少時(shí),才能使每月獲得最大利潤?每月的最大利潤是多少?(總利潤=總收入-總成本)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案