設(shè)a、b為常數(shù),并且b<0,拋物線數(shù)學(xué)公式的圖象為圖中的四個(gè)圖象之一.則a=________.


分析:根據(jù)b<0,可判定拋物線的圖象可能是第三、四個(gè)中的一個(gè),此時(shí)圖象經(jīng)過(guò)原點(diǎn),故c=0,即,解得求得a的值即可.
解答:∵b<0
∴對(duì)稱軸不是y軸.
∴拋物線的圖象可能是第三、四個(gè)中的一個(gè),
∵圖象可知圖象經(jīng)過(guò)原點(diǎn),
∴c=0,
即:,
解得:a=,
∵圖象3當(dāng)中拋物線對(duì)稱軸在y軸右邊,而b<0,所以a>0,
∴圖象3不對(duì),解得的負(fù)值應(yīng)舍去.
故填:
點(diǎn)評(píng):本題考查了二次函數(shù)的圖象的與系數(shù)的關(guān)系,解決本題有固定的方法,關(guān)鍵是理解并記熟這些方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線y=x2+(2m-1)x+m2-1(m為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn),并且頂點(diǎn)在第四象限時(shí),求出它所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為Q,拋物線的頂點(diǎn)為P,試求經(jīng)過(guò)O、P、Q三點(diǎn)的圓的圓心O′的坐標(biāo);
(3)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對(duì)稱軸左側(cè)的一個(gè)動(dòng)點(diǎn),過(guò)A作x軸的平行線,交拋物線于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C,
①當(dāng)BC=1時(shí),求矩形ABCD的周長(zhǎng);
②試問(wèn)矩形ABCD的周長(zhǎng)是否存在最大值?如果存在,請(qǐng)求出這個(gè)最大值,并指出此時(shí)A點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=x2+(2n-1)x+n2-1(n為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn),并且頂點(diǎn)在第四象限時(shí),求出它所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對(duì)稱軸左側(cè)的一個(gè)動(dòng)點(diǎn),過(guò)A作x軸的平行線,交拋物線于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C.
①當(dāng)BC=1時(shí),求矩形ABCD的周長(zhǎng);
②試問(wèn)矩形ABCD的周長(zhǎng)是否存在最大值?如果存在,請(qǐng)求出這個(gè)最大值,并指出此時(shí)A點(diǎn)的坐標(biāo).如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》?碱}集(25):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y=x2+(2n-1)x+n2-1(n為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn),并且頂點(diǎn)在第四象限時(shí),求出它所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對(duì)稱軸左側(cè)的一個(gè)動(dòng)點(diǎn),過(guò)A作x軸的平行線,交拋物線于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C.
①當(dāng)BC=1時(shí),求矩形ABCD的周長(zhǎng);
②試問(wèn)矩形ABCD的周長(zhǎng)是否存在最大值?如果存在,請(qǐng)求出這個(gè)最大值,并指出此時(shí)A點(diǎn)的坐標(biāo).如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年福建省福州市馬尾區(qū)中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•揚(yáng)州)已知拋物線y=x2+(2n-1)x+n2-1(n為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn),并且頂點(diǎn)在第四象限時(shí),求出它所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對(duì)稱軸左側(cè)的一個(gè)動(dòng)點(diǎn),過(guò)A作x軸的平行線,交拋物線于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C.
①當(dāng)BC=1時(shí),求矩形ABCD的周長(zhǎng);
②試問(wèn)矩形ABCD的周長(zhǎng)是否存在最大值?如果存在,請(qǐng)求出這個(gè)最大值,并指出此時(shí)A點(diǎn)的坐標(biāo).如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案