【題目】已知,如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù)且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂直為D,若OB=2OA=3OD=6.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求兩函數(shù)圖象的另一個交點坐標(biāo);
(3)直接寫出不等式;kx+b≤的解集.
【答案】(1)y=﹣2x+6, ;(2)(5,﹣4);(3)﹣2≤x<0或x≥5.
【解析】試題分析:(1)先求出A、B、C坐標(biāo),再利用待定系數(shù)法確定函數(shù)解析式.
(2)兩個函數(shù)的解析式作為方程組,解方程組即可解決問題.
(3)根據(jù)圖象一次函數(shù)的圖象在反比例函數(shù)圖象的下方,即可解決問題,注意等號.
試題解析:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴,∴,∴CD=10,∴點C坐標(biāo)(﹣2,10),B(0,6),A(3,0),∴解得: ,∴一次函數(shù)為y=﹣2x+6.
∵反比例函數(shù)經(jīng)過點C(﹣2,10),∴n=﹣20,∴反比例函數(shù)解析式為;
(2)由,解得或,故另一個交點坐標(biāo)為(5,﹣4);
(3)由圖象可知的解集:﹣2≤x<0或x≥5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名戰(zhàn)士在同樣條件下射靶10次,命中環(huán)數(shù)分別是:6,9,9,8,7,9,8,7,10,6,則該戰(zhàn)士射擊壞數(shù)的眾數(shù)與中位數(shù)分別是( )
A.8,8
B.9,9
C.8,9
D.9,8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,ΔABC的頂點都在網(wǎng)格點上。
(1)平移ΔABC,使點C與坐標(biāo)原點O是對應(yīng)點,請畫出平移后的三角形ΔA1 B1O,并寫出A、B兩點的對應(yīng)點A1、B1 的坐標(biāo);
(2)求ΔABC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗想用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.不知能否裁出來,正在發(fā)愁.小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1,l2交于點C和D,直線l3上有一點P。
(1)如圖1,若P點在C,D之間運(yùn)動時,問∠PAC,∠APB,∠PBD之間的關(guān)系是否發(fā)生變化,并說明理由;
(2)若點P在C,D兩點的外側(cè)運(yùn)動時(P點與點C,D不重合,如圖2和3),試寫出∠PAC,∠APB,∠PBD之間的關(guān)系,并說明理由。(圖3只寫結(jié)論,不寫理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a、b是直角三角形的兩條直角邊,若該三角形的周長為12,斜邊長為5,則ab的值是( )
A. 6B. 8C. 12D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程x2﹣8x+15=0左邊配成一個完全平方式后,所得的方程是( )
A.(x﹣6)2=1
B.(x﹣4)2=1
C.(x﹣4)2=31
D.(x﹣4)2=﹣7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com