【題目】已知等邊△ABC的邊長為2,點D在射線CB上,點E在射線AC上,且AD=AE,∠EDC=15°,則線段CD=_______.
【答案】1或4
【解析】
如圖1和圖2,分點D、點E分別在線段CB和AC上和點D、點E分別在CB的延長線和AC的延長線上兩種情形畫出符合題意的圖形,再結合已知條件分別進行分析解答即可.
(1)如圖1,當點D、點E分別在線段CB和AC上時,
∵△ABC是等邊三角形,
∴∠C=∠BAC=60°,
∵∠CDE=15°,
∴∠AED=∠CDE+∠C=15°+60°=75°,
∵AD=AE,
∴∠AED=∠AED=75°,
∴∠DAE=180°-75°-75°=30°,
∴∠BAD=60°-30°=30°=∠CAD,
∴AD是等邊三角形BC邊上的中線,
∴CD=BC=1;
(2)如圖2,當點D、點E分別在CB的延長線和AC的延長線上時,
∵△ABC是等邊三角形,
∴∠ACB =60°,
∵∠CDE=15°,
∴∠E=∠ACB-∠CDE=60°-15°=45°,
∵AD=AE,
∴∠ADE=∠E=45°,
∴∠DAE=180°-45°-45°=90°,
∴∠ADC=180°-∠DAE-∠ACB=30°,
∴CD=2AC=4.
綜合(1)(2)可得:CD=1或4.
故答案為:1或4.
科目:初中數學 來源: 題型:
【題目】(8分)某市團委在2015年3月初組成了300個學雷鋒小組,現從中隨機抽取6個小組在3月份做好事件數的統計情況如圖所示:
(1)這6個學雷鋒小組在2015年3月份共做好事多少件?
(2)補全條形統計圖;
(3)請估計該市300個學雷鋒小組在2015年3月份共做好事多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置測角儀AB,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結果精確到0.1米,參考數據: ≈1.414, ≈1.732).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx+b的圖象經過A(﹣2,﹣1),B(1,3)兩點,并且交x軸于點C,交y軸于點D.
(1)求一次函數的解析式;
(2)求點C和點D的坐標;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,甲、乙兩動點分別從正方形ABCD的頂點A.C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行.若甲的速度是乙的速度的3倍,則它們第2015次相遇在邊________上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店從機械廠購進甲、乙兩種零件進行銷售,若甲種零件每件的進價是乙種零件每件進價的,用1600元單獨購進一種零件時,購進甲種零件的數量比乙種零件的數量多4件.
(1)求每件甲種零件和每件乙種零件的進價分別為多少元?
(2)若該商店計劃購進甲、乙兩種零件共110件,準備將零件批發(fā)給零售商. 甲種零件的批發(fā)價是每件100元,乙種零件的批發(fā)價是每件130元,該商店計劃將這批產品全部售出從零售商處獲利不低于3000元,那么該商店最多購進多少件甲種零件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題:五蓮縣新瑪特購物中心第一次用5000元購進甲、乙兩種商品,其中乙商品的件數比甲商品件數的倍多15件,甲、乙兩種商品的進價和售價如下表(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 20 | 30 |
售價(元/件) | 29 | 40 |
(1)新瑪特購物中心將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(2)該購物中心第二次以第一次的進價又購進甲、乙兩種商品,其中甲種商品的件數不變,乙種商品的件數是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,BD平分∠ABC.過點D作AB的平行線,過點B作AC的平行線,兩平行線相交于點E, BC交DE于點F,連接CE.求證:四邊形BECD是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在數軸上A點表示數a,B點示數b,C點表示數c,b是最小的正整數,且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數軸折疊,使得A點與C點重合,則點B與數 表示的點重合.
(3) 點A,B,C開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數式表示)
(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com