【題目】如圖,拋物線y=x2+bx+c交x軸于A、B兩點,其中點A坐標(biāo)為(1,0),與y軸交于點C(0,﹣3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖①,連接AC,點P在拋物線上,且滿足∠PAB=2∠ACO.求點P的坐標(biāo);
(3)如圖②,點Q為x軸下方拋物線上任意一點,點D是拋物線對稱軸與x軸的交點,直線AQ、BQ分別交拋物線的對稱軸于點M、N.請問DM+DN是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
【答案】(1)拋物線的函數(shù)表達(dá)式為y=x2+2x﹣3;(2)點P的坐標(biāo)為,或,;(3)為定值8.
【解析】
(1)把點、坐標(biāo)代入拋物線解析式即求得、的值.
(2)點可以在軸上方或下方,需分類討論.①若點在軸下方,延長到,使構(gòu)造等腰,作中點,即有,利用的三角函數(shù)值,求、的長,進(jìn)而求得的坐標(biāo),求得直線的解析式后與拋物線解析式聯(lián)立,即求出點坐標(biāo).②若點在軸上方,根據(jù)對稱性,一定經(jīng)過點關(guān)于軸的對稱點,求得直線的解析式后與拋物線解析式聯(lián)立,即求出點坐標(biāo).
(3)設(shè)點橫坐標(biāo)為,用表示直線、的解析式,把分別代入即求得點、的縱坐標(biāo),再求、的長,即得到為定值.
解:(1)∵拋物線y=x2+bx+c經(jīng)過點A(1,0),C(0,﹣3)
解得:
∴拋物線的函數(shù)表達(dá)式為y=x2+2x﹣3
(2)①若點P在x軸下方,如圖1,
延長AP到H,使AH=AB,過點B作BI⊥x軸,連接BH,作BH中點G,連接并延長AG交BI于點F,過點H作HI⊥BI于點I
∵當(dāng)x2+2x﹣3=0,解得:x1=﹣3,x2=1
∴B(﹣3,)
∵A(1,0),C(0,﹣3)
,,,
中,,
∵AB=AH,G為BH中點
∴AG⊥BH,BG=GH
∴∠BAG=∠HAG,即∠PAB=2∠BAG
∵∠PAB=2∠ACO
∴∠BAG=∠ACO
中,,
中,,,
,
,,即,
設(shè)直線解析式為
解得:
直線
解得:(即點,
,;
②若點在軸上方,如圖2,
在上截取,則與關(guān)于軸對稱
,
設(shè)直線解析式為
解得:
直線
解得:(即點,
,.
綜上所述,點的坐標(biāo)為,或,.
(3)為定值,
拋物線的對稱軸為:直線
,
設(shè),
設(shè)直線解析式為
解得:
直線
當(dāng)時,
設(shè)直線解析式為
解得:
直線
當(dāng)時,
,為定值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知、、、、五個點,拋物線經(jīng)過其中的三個點.
(1)求證:點、不能同時在拋物線上;
(2)點在拋物線上嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當(dāng)陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某班甲、乙、丙三位同學(xué)最近5次數(shù)學(xué)成績及其所在班級相應(yīng)平均分的折線統(tǒng)計圖,則下列判斷錯誤的是( ).
A. 甲的數(shù)學(xué)成績高于班級平均分,且成績比較穩(wěn)定
B. 乙的數(shù)學(xué)成績在班級平均分附近波動,且比丙好
C. 丙的數(shù)學(xué)成績低于班級平均分,但成績逐次提高
D. 就甲、乙、丙三個人而言,乙的數(shù)學(xué)成績最不穩(wěn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為Rt△ABC斜邊中點,AB=10,BC=6,M,N在AC邊上,∠MON=∠B,若△OMN與△OBC相似,則CM=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD是△ABC的中線P是線段AD上的一點(不與點A、D重合),連接PB、PC,E、F、G、H分別是AB、AC、PB、PC的中點,AD與EF交于點M;
(1)如圖1,當(dāng)AB=AC時,求證:四邊形EGHF是矩形;
(2)如圖2,當(dāng)點P與點M重合時,在不添加任何輔助線的條件下,寫出所有與△BPE面積相等的三角形(不包括△BPE本身).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某環(huán)衛(wèi)公司承包了市區(qū)兩個片區(qū)道路的清掃任務(wù),需要購買某廠家A,B兩種型號的馬路清掃車,購買5輛A型馬路清掃車和6輛B型馬路清掃車共需171萬元;購買3輛A型馬路清掃車和12輛B型馬路清掃車共需237萬元.
(1)求這兩種馬路清掃車的單價;
(2)恰逢該廠舉行30周年慶,決定對這兩種馬路清掃車開展促銷活動,具體方案如下:購買A型馬路清掃車按原價的八折銷售,購買B型馬上清掃車不超過10輛時按原價銷售,超過10輛的部分按原價的七折銷售.設(shè)購買x輛A種馬路清掃車需要y1元,購買x(x>0)個B型馬路清掃車需要y2元,分別求出y1,y2關(guān)于x的函數(shù)關(guān)系式;
(3)若該公司承包的道路清掃面積為118000m2,每輛A型馬路清掃車每天清掃5000m2,每輛B型馬路清掃車每天清掃6000m2,公司準(zhǔn)備購買20輛馬路清掃車,且B型馬路清掃車的數(shù)量大于10.請你幫該公司設(shè)計出最省錢的購買方案.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小雪和小松分別從家和圖書館出發(fā),沿同一條筆直的馬路相向而行.小雪開始跑步,中途在某地改為步行,且步行的速度為跑步速度的一半,小雪先出發(fā)5分鐘后,小松才騎自行車勻速回家.小雪到達(dá)圖書館恰好用了35分鐘.兩人之間的距離y(m)與小雪離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖所示,則當(dāng)小松剛到家時,小雪離圖書館的距離為____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過A(﹣2,0),B(0,2),C(,0)三點,一動點P從原點出發(fā)以1個單位/秒的速度沿x軸正方向運動,連接BP,過點A作直線BP的垂線交y軸于點Q.設(shè)點P的運動時間為t秒.
(1)求拋物線的解析式;
(2)當(dāng)BQ=AP時,求t的值;
(3)隨著點P的運動,拋物線上是否存在一點M,使△MPQ為等邊三角形?若存在,請直接寫t的值及相應(yīng)點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com