【題目】2016年《政府工作報告》中提出了十大新詞匯,為了解同學們對新詞匯的關注度,某數(shù)學興趣小組選取其中的A:“互聯(lián)網(wǎng)+政務服務”,B:“工匠精神”,C:“光網(wǎng)城市”,D:“大眾旅游時代”四個熱詞在全校學生中進行了抽樣調查,要求被調查的每位同學只能從中選擇一個我最關注的熱詞.根據(jù)調查結果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調查中,一共調查了多少名同學?
(2)條形統(tǒng)計圖中,m= , n=;
(3)扇形統(tǒng)計圖中,熱詞B所在扇形的圓心角是多少度?

【答案】
(1)解:105÷35%=300(人),答:一共調查了300名同學
(2)60;90
(3)解: ×360°=72°.

答:扇形統(tǒng)計圖中,熱詞B所在扇形的圓心角是72度


【解析】解:(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案為:60,90; (1)根據(jù)A的人數(shù)為105人,所占的百分比為35%,求出總人數(shù),即可解答;(2)C所對應的人數(shù)為:總人數(shù)×30%,B所對應的人數(shù)為:總人數(shù)﹣A所對應的人數(shù)﹣C所對應的人數(shù)﹣D所對應的人數(shù),即可解答;(3)根據(jù)B所占的百分比×360°,即可解答.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對一批襯衣進行抽檢,統(tǒng)計合格襯衣的件數(shù),得到如下的頻數(shù)表:

抽查件數(shù)(件)

100

150

200

500

800

1000

合格頻數(shù)

85

141

176

445

724

900

根據(jù)表中數(shù)據(jù),下列說法錯誤的是(
A.抽取100件的合格頻數(shù)是85
B.任抽取一件襯衣是合格品的概率是0.8
C.抽取200件的合格頻率是0.88
D.出售1200件襯衣,次品大約有120件

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,直徑AF平分∠BAC,交BC于點D.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長BA到點E,連接ED、EC,ED交AC于點G,且ED=EC,求證:∠EGC=∠ECA+2∠ACB;
(3)如圖3,在(2)的條件下,當BC是⊙O的直徑時,取DC的中點M,連接AM并延長交圓于點N,且EG=5,連接CN并求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲轉盤被分成 3 個面積相等的扇形,乙轉盤被分成4個面積相等的扇形,每一個扇形都標有相應的數(shù)字.同時轉動兩個轉盤,當轉盤停止后,設甲轉盤中指針所指區(qū)域內(nèi)的數(shù)字為x,乙轉盤中指針所指區(qū)域內(nèi)的數(shù)字為y(當指針指在邊界線上時,重轉,直到指針指向一個區(qū)域為止).
(1)請你用畫樹狀圖或列表格的方法,求點(x,y)落在第二象限內(nèi)的概率;
(2)直接寫出點(x,y)落在函數(shù)y=﹣ 圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結論:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正確結論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某中學九年級學生中考體育成績情況,現(xiàn)從中抽取部分學生的體育成績進行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)統(tǒng)計,統(tǒng)計結果如圖所示.
根據(jù)上面提供的信息,回答下列問題:
(1)本次抽查了多少名學生的體育成績;
(2)補全圖9.1,求圖9.2中D分數(shù)段所占的百分比;
(3)已知該校九年級共有900名學生,請估計該校九年級學生體育成績達到40分以上(含40分)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BD交BC于F,連接DF,G為DF中點,連接EG,CG.
(1)求證:EG=CG;EG⊥CG.
(2)將圖①中△BEF繞B點逆時針旋轉45°,如圖②所示,取DF中點G,連接EG,CG.問(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給定直線l:y=kx,拋物線C:y=ax2+bx+1.

(1)當b=1時,l與C相交于A,B兩點,其中A為C的頂點,B與A關于原點對稱,求a的值;
(2)若把直線l向上平移k2+1個單位長度得到直線l′,則無論非零實數(shù)k取何值,直線l′與拋物線C都只有一個交點.
①求此拋物線的解析式;
②若P是此拋物線上任一點,過P作PQ∥y軸且與直線y=2交于Q點,O為原點.求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點E,AE=1,ED=2.
(1)求證:∠ABC=∠D;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案