【題目】計算:﹣16 ×cos45°﹣20170+3﹣1 .
【答案】解:﹣16 ×cos45°﹣20170+3﹣1=﹣1+2 × ﹣1+
= .
【解析】直接利用特殊角的三角函數(shù)值結合零指數(shù)冪的性質以及負指數(shù)冪的性質分別化簡求出答案.
【考點精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質的相關知識點,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】我市某風景區(qū)門票價格如圖所示,百姓旅行社有甲、乙兩個旅行團隊,計劃在“五一”小黃金周期間到該景點游玩,兩團隊游客人數(shù)之和為120人,乙團隊人數(shù)不超過50人.設甲團隊人數(shù)為x人,如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為W元.
(1)求W關于x的函數(shù)關系式,并寫出自變量x 的取值范圍;
(2)若甲團隊人數(shù)不超過100人,請說明甲、乙兩團隊聯(lián)合購票比分別購票最多可節(jié)約多少元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=﹣x+6,交x軸、y軸于A、B兩點,拋物線y=x2+mx+n經(jīng)過A點,且與直線y=﹣x+6交于另一點P.
(1)若P與B點重合,求拋物線的解析式;
(2)若P在第一象限,過PE⊥x軸于E點,PF⊥y軸于F點,當四邊形PEOF面積為5,求拋物線的解析式;
(3)若△OAP為等腰三角形,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù)y=x2﹣3(m﹣1)x+3m﹣4(m為實數(shù))的圖象與x軸交于A(x1 , 0)、B(x2 , 0)(x1≠x2)兩點.
(1)求m的取值范圍;
(2)若 (O為坐標原點),求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點,連接CE并延長交AD于F.
(1)求證:①△AEF≌△BEC;②四邊形BCFD是平行四邊形;
(2)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,求sin∠ACH的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB、CD分別表示甲乙兩建筑物的高,BA⊥AD,CD⊥DA,垂足分別為A、D.從D點測到B點的仰角α為60°,從C點測得B點的仰角β為30°,甲建筑物的高AB=30米
(1)求甲、乙兩建筑物之間的距離AD.
(2)求乙建筑物的高CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點E是邊CD上一點,且BC=EC,CF⊥BE交AB于點F,P是EB延長線上一點,下列結論: ①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,
其中正確結論的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別位于反比例函數(shù)y= ,y= 在第一象限圖象上的兩點A、B,與原點O在同一直線上,且 = .
(1)求反比例函數(shù)y= 的表達式;
(2)過點A作x軸的平行線交y= 的圖象于點C,連接BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖1中△A1B1C繞點C順時針旋轉45°得圖2,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖2中,若AP1=a,則CQ等于多少?
(3)將圖2中△A1B1C繞點C順時針旋轉到△A2B2C(如圖3),點P2是A2C與AP1的交點.當旋轉角為多少度時,有△AP1C∽△CP1P2?這時線段CP1與P1P2之間存在一個怎樣的數(shù)量關系?.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com