【題目】在如圖所示的方格紙中,小正方形的頂點(diǎn)叫做格點(diǎn),是一個(gè)格點(diǎn)三角形(即的三個(gè)頂點(diǎn)都在格點(diǎn)上),根據(jù)要求回答下列問題:
畫出先向左平移6格,再向上平移格所得的;
利用網(wǎng)格畫出中邊上的高.
過點(diǎn)畫直線,將分成面積相等的兩個(gè)三角形;
畫出與有一條公共邊,且與全等的格點(diǎn)三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=x2+bx+c的圖象過點(diǎn)A(1,0)和C(0,﹣3)
(1)求這個(gè)二次函數(shù)的解析式;
(2)如果這個(gè)二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為B,求線段AB的長.
(3)在這條拋物線上是否存在一點(diǎn)P,使△ABP的面積為8?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4,)、B(2,-4)是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)求方程的解(直接寫出答案)
(4)求不等式的解集(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市市民2018年乘坐公交車的每人月均花費(fèi)情況,相關(guān)部門隨機(jī)調(diào)查了1000人的相關(guān)信息,并繪制了如圖所示的頻數(shù)直方圖,根據(jù)圖中提供的信息,有下列說法(每組值包括最低值,不包括最高值):①乘坐公交車的月均花費(fèi)在60元~80元的人數(shù)最多;②月均花費(fèi)在160元(含160元)以上的人數(shù)占所調(diào)查總?cè)藬?shù)的10%;③在所調(diào)查的1000人中,至少有一半以上的人的月均花費(fèi)超過75元;④為了讓市民享受更多的優(yōu)惠,相關(guān)部門擬確定一個(gè)折扣標(biāo)準(zhǔn),計(jì)劃使30%左右的人獲得優(yōu)惠,那么可以是乘坐公交車的月均花費(fèi)達(dá)到100元(含100元)以上的人享受折扣.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如圖1,若,則.
理由:如圖,過點(diǎn)作,
則.
因?yàn)?/span>,
所以,
所以,
所以.
交流:(1)若將點(diǎn)移至圖2所示的位置,,此時(shí)、、之間有什么關(guān)系?請(qǐng)說明理由.
探究:(2)在圖3中,,、又有何關(guān)系?
應(yīng)用:(3)在圖4中,若,又得到什么結(jié)論?請(qǐng)直接寫出該結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是∠內(nèi)的一點(diǎn),過點(diǎn)作于點(diǎn)于點(diǎn),且.
求證: ;
如圖②,點(diǎn)是射線上一點(diǎn),點(diǎn)是線段上一點(diǎn),且,若.求線段的長.
如圖③,若,將繞點(diǎn)以每秒的速度順時(shí)針旋轉(zhuǎn),秒后,開始繞點(diǎn)以每秒的速度順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后停止,此時(shí)也隨之停止旋轉(zhuǎn)。旋轉(zhuǎn)過程中,所在直線與所在直線的交點(diǎn)記為所在直線與所在直線的交點(diǎn)記為.問旋轉(zhuǎn)幾秒時(shí),?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,E為正方形ABCD的邊BC延長線上一點(diǎn),且CE=AC,AE交CD于點(diǎn)F,那么∠AFC的度數(shù)為( )
A. 112.5° B. 125° C. 135° D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠CAB=2∠B,AE平分∠CAB,CD⊥AB于D,AC=3,AD=1.下列結(jié)論:①∠AEC=∠CAB;②EF=CE;③AC=AE;④BD=4;
正確的是___________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y =ax+b的圖像與反比例函數(shù)y =的圖像交于A(4,﹣2)、B(﹣2,m)兩點(diǎn),與x軸交于點(diǎn)C.
(1)求a,m的值;
(2)請(qǐng)直接寫出不等式ax+b≥的解集;
(3)點(diǎn)P在反比例函數(shù)圖像上,且點(diǎn)P的橫坐標(biāo)為-4,在平面直角坐標(biāo)系中是否存在一點(diǎn)Q,使得以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com