在矩形ABCD中,點(diǎn)E是BC上一點(diǎn),AE=AD,DF⊥AE,垂足為F;
求證:DF=DC.
【答案】分析:根據(jù)矩形的性質(zhì)和DF⊥AE于F,可以得到∠DEC=∠AED,∠DFE=∠C=90,進(jìn)而依據(jù)AAS可以證明△DFE≌△DCE.然后利用全等三角形的性質(zhì)解決問(wèn)題.
解答:證明:連接DE.(1分)
∵AD=AE,
∴∠AED=∠ADE.(1分)
∵有矩形ABCD,
∴AD∥BC,∠C=90°.(1分)
∴∠ADE=∠DEC,(1分)
∴∠DEC=∠AED.
又∵DF⊥AE,
∴∠DFE=∠C=90°.
∵DE=DE,(1分)
∴△DFE≌△DCE.
∴DF=DC.(1分)
點(diǎn)評(píng):此題比較簡(jiǎn)單,主要考查了矩形的性質(zhì),全等三角形的性質(zhì)與判定,綜合利用它們解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、如圖,在矩形ABCD中,點(diǎn)E是BC上一點(diǎn),AE=AD,DF⊥AE,垂足為F.線段DF與圖中的哪一條線段相等?先將你猜想出的結(jié)論填寫(xiě)在下面的橫線上,然后再加以證明.即DF=
AB
.(寫(xiě)出一條線段即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖所示,在矩形ABCD中,點(diǎn)E在BC上,AE=AD,DF⊥AE于F,若AB=3,BC=5,則四邊形DFEC的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在邊AD,BC上,BE⊥EF,AB=6cm,AD=11cm(其中AE>DE),DF=4cm,求BE的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,點(diǎn)P在矩形ABCD內(nèi),若AB=4,BC=6,AE=CG=3,BF=DH=4,四邊形AEPH的面積為5,求四邊形PFCG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州)如圖,在矩形ABCD中,點(diǎn)P在邊CD上,且與C、D不重合,過(guò)點(diǎn)A作AP的垂線與CB的延長(zhǎng)線相交于點(diǎn)Q,連接PQ,M為PQ中點(diǎn).
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點(diǎn)P在邊CD上運(yùn)動(dòng),設(shè)DP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點(diǎn)M的位置也在變化.當(dāng)點(diǎn)M落在矩形ABCD外部時(shí),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案