【題目】有三張正面分別寫有數(shù)字﹣1,1,2的卡片,它們背面完全相同,現(xiàn)將這三張卡片背面朝上洗勻后.
(1)隨機抽取一張,求抽到數(shù)字2的概率;
(2)隨機抽取一張,以其正面數(shù)字作為a的值,然后再從剩余的兩張卡片隨機抽一張,以其正面的數(shù)字作為b的值,請你用畫樹狀圖或列表格的方法表示所有可能的結果,并求出點(a,b)在第四象限的概率.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=﹣1的拋物線y=ax2+bx+c(a≠0)與x軸相交于A、B兩點,其中點A的坐標為(﹣3,0).
(1)求點B的坐標;
(2)已知a=1,C為拋物線與y軸的交點,若點P在拋物線上,且S△POC=4S△BOC.求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣1,0)、點B,與y軸交于點C,拋物線的對稱軸是直線x=1,連接BC、AC.
(1)求S△ABC(用含有a的代數(shù)式來表示);
(2)若S△ABC=6,求拋物線的解析式;
(3)在(2)的條件下,當﹣1≤x≤m+1時,y的最大值是2,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,設D為銳角△ABC內一點,∠ADB=∠ACB+90°,過點B作BE⊥BD,BE=BD,連接EC.
(1)求∠CAD+∠CBD的度數(shù);
(2)若,
①求證:△ACD∽△BCE;
②求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD切⊙O于C點,弦CF⊥AB于E點,連結AC.
(1)求證:∠ACD=∠ACF;
(2)當AD⊥CD,BE=2cm,CF=8cm,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】光明中學為了解學生對食堂工作的滿意程度,8年級2班數(shù)學興趣小組在全校甲、乙兩個班內進行了調查統(tǒng)計,將調查結果分為不滿意、一般、滿意、非常滿意四類,回收、整理好全部問卷后,得到下列不完整的統(tǒng)計圖.
請結合圖中信息,解決下列問題:
(1)求此次調查中接受調查的人數(shù);
(2)求此次調查中結果為非常滿意的人數(shù);
(3)興趣小組準備從調查結果為一般的4位同學中隨機選擇2位進行回訪,已知4位同學中有2位來自甲班,另2位來自乙班,請用列表或用畫樹狀圖的方法求出選擇的同學均來自甲班的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料
我們通過下列步驟估計方程2x2+x﹣2=0的根的所在的范圍.
第一步:畫出函數(shù)y=2x2+x﹣2的圖象,發(fā)現(xiàn)圖象是一條連續(xù)不斷的曲線,且與x軸的一個
交點的橫坐標在0,1之間.
第二步:因為當x=0時,y=﹣2<0;當x=1時,y=1>0.
所以可確定方程2x2+x﹣2=0的一個根x1所在的范圍是0<x1<1.
第三步:通過取0和1的平均數(shù)縮小x1所在的范圍;
取x=,因為當x=時,y<0,
又因為當x=1時,y>0,
所以<x1<1.
(1)請仿照第二步,通過運算,驗證2x2+x﹣2=0的另一個根x2所在范圍是﹣2<x2<﹣1;
(2)在﹣2<x2<﹣1的基礎上,重復應用第三步中取平均數(shù)的方法,將x2所在范圍縮小至m<x2<n,使得n﹣m≤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標為A(﹣4,1),B(﹣2,3),C(﹣1,2).
(1)畫出△ABC關于原點O成中心對稱的△A′B′C′,點A′,B′,C′分別是點A,B,C的對應點.
(2)求過點B′的反比例函數(shù)解析式.
(3)判斷A′B′的中點P是否在(2)的函數(shù)圖象上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com