點(diǎn)(-1,3)不在直線( 。┥希
A.y=-2x+1B.y=3x-6C.y=-x+2D.y=2x+5
A、將點(diǎn)(-1,3)代入y=-2x+1得,3=-2×(-1)+1,成立,點(diǎn)(-1,3)在直線上;
B、將點(diǎn)(-1,3)代入y=3x-6得,3≠3×(-1)-6,不成立,點(diǎn)(-1,3)不在直線上;
C、將點(diǎn)(-1,3)代入y=-x+2得,3=-(-1)+2,成立,點(diǎn)(-1,3)在直線上;
D、將點(diǎn)(-1,3)代入y=2x+5得,3=2×(-1)+5,成立,點(diǎn)(-1,3)在直線上.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=4,AD=10,直角尺的直角頂點(diǎn)P在AD上滑動(dòng)時(shí)(點(diǎn)P與A,D不重合),精英家教網(wǎng)一直角邊經(jīng)過(guò)點(diǎn)C,另一直角邊AB交于點(diǎn)E,我們知道,結(jié)論“Rt△AEP∽R(shí)t△DPC”成立.
(1)當(dāng)∠CPD=30°時(shí),求AE的長(zhǎng);
(2)是否存在這樣的點(diǎn)P,使△DPC的周長(zhǎng)等于△AEP周長(zhǎng)的2倍?若存在,求出DP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點(diǎn),過(guò)點(diǎn)E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OC在x軸正半軸上,點(diǎn)A、B在第一象限內(nèi).
(1)求點(diǎn)E的坐標(biāo);
(2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥EF交OC于點(diǎn)M,過(guò)M作MN∥AO交折線ABC于點(diǎn)N,連接PN.設(shè)PE=x.△PMN的面積為S.
①求S關(guān)于x的函數(shù)關(guān)系式;
②△PMN的面積是否存在最大值,若不存在,請(qǐng)說(shuō)明理由.若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).現(xiàn)在開(kāi)始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個(gè)單位的速度沿OC方向向右移動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止(如圖2).設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的直角梯形為E′D′G′H′;探究:在運(yùn)動(dòng)過(guò)程中,等腰梯ABCO與直角梯形E′D′G′H′重合部分的面積y與時(shí)間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點(diǎn)P是線段AB中垂線上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形?若存在,試直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;
(3)點(diǎn)Q為線段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=6,AD=11.直角尺的直角頂點(diǎn)P在AD上滑動(dòng)時(shí)(點(diǎn)P與A,D不重合),一直角邊始終經(jīng)過(guò)點(diǎn)C,另一直角邊與AB交于點(diǎn)E.
(1)△CDP與△PAE相似嗎?如果相似,請(qǐng)寫(xiě)出證明過(guò)程;
(2)當(dāng)∠PCD=30°時(shí),求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知線段AB=4,點(diǎn)C是平面上一點(diǎn)(不與A,B重合),M、N分別是線段CA,CB的中點(diǎn).
(1)當(dāng)C在線段AB上時(shí),如圖,求MN的長(zhǎng);
(1)當(dāng)C在線段AB的延長(zhǎng)線上時(shí),畫(huà)出圖形,并求MN長(zhǎng);
(2)當(dāng)C在直段AB外時(shí),畫(huà)出圖形,量一量,寫(xiě)出MN的長(zhǎng)(不寫(xiě)理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案