【題目】如圖,在△ABC中,以AB為斜邊作Rt△ABD,使點(diǎn)D落在△ABC內(nèi),∠ADB=90°.
(1)若AB=AC,把△ABD繞點(diǎn)A逆時針旋轉(zhuǎn),得到△ACE,連接ED并延長交BC于點(diǎn)P,請動手在圖1中畫出圖形,并直接寫出∠BDP與∠BAC的數(shù)量關(guān)系 ;
(2)求證:BP=CP;
(3)如圖2,若AD=BD,過點(diǎn)D作直線DE⊥AC于E交BC于F,且AE=EC,若BF=3,AC=,則BD= (請直接寫出結(jié)果).
【答案】(1)如圖示,四邊形ABCE為所求.
(2)證明見詳解.
(3)
【解析】
(1)作圖,由旋轉(zhuǎn)得到,,所以,利用,,則可以求出.
(2)在ED上截取EQ=PD,利用△BDP≌△CEQ,∠DBP=∠QCE,即可得到BP=CP.
(3)連接AF、CD.利用勾股定理可以求出, ,的三邊關(guān)系,然后利用等量代換則可求出.
解
(1) 如圖示,四邊形ABCE為所求.
∵
∴
∵由旋轉(zhuǎn)得到,
∴
∴
∴
(2)如圖2,
在ED上截取EQ=PD,
∵∠ADB=90°,
∴∠BDP+∠ADE=90°,
∵AD=AE,
∴∠ADE=∠AED,
∵把△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)一定角度,得到△ACE,
∴∠AEC=∠ADB=90°
∵∠AED+∠PEC=90°,
∴∠BDP=∠PEC,
在△BDP和△CEQ中,
,
∴△BDP≌△CEQ,
∴BP=CQ,∠DBP=∠QCE,
∵∠CPE=∠BDP+∠DBP,∠PQC=∠PEC+∠QCE,
∴∠EPC=∠PQC,
∴PC=CQ,
∴BP=CP
(3)
如圖3,連接AF、CD.
∵EF⊥AC,且AE=EC,
∴FA=FC,∠FAC=∠FCA,
∵EF⊥AC,且AE=EC,
∴∠DAC=∠DCA,DA=DC,
∵AD=BD,
∴BD=DC,
∴∠DBC=∠DCB,
∵∠FAC=∠FCA,∠DAC=∠DCA,
∴∠DAF=∠DCB,
∴∠DAF=∠DBC,
∴∠AFB=∠ADB=90°,
在中,DA=DB,
∴,
在中,,
∵
∴
在中,FC=AF,
∴
∴
即:
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠BAC=90°,對角線AC,BD相交于點(diǎn)P,以AB為直徑的⊙O分別交BC,BD于點(diǎn)E,Q,連接EP并延長交AD于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)求證:=4BPQP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的閱讀能力,我市某校開展了“讀好書,助成長”的活動,并計(jì)劃購置一批圖書,購書前,對學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,請根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計(jì)圖中的m= ,n= .
(2)已知該校共有3600名學(xué)生,請你估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校將舉辦讀書知識競賽,九年級1班要在本班3名優(yōu)勝者(2男1女)中隨機(jī)選送2人參賽,請用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上一點(diǎn),E是AC邊上一點(diǎn).且滿足AD=AB,∠ADE=∠C.
(1)求證:AB2=AEAC;
(2)若D為BC中點(diǎn),AE=4,EC=6,且tanB=3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)P為△ABC內(nèi)一點(diǎn),∠APB=∠BAC=120°.若AP+BP=4,則PC的最小值為( )
A. 2B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象經(jīng)過點(diǎn)A(2,3)與點(diǎn)B(0,5)。
(1)求此一次函數(shù)的解析式。
(2)若P點(diǎn)為此一次函數(shù)圖象上一點(diǎn),且△POB的面積為10.求點(diǎn)P坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰Rt△ABC中,∠BAC=90°,AB=AC,在△ABC外作∠ACM=∠ABC,點(diǎn)D為直線BC上的動點(diǎn),過點(diǎn)D作直線CM的垂線,垂足為E,交直線AC于F.
(1)當(dāng)點(diǎn)D在線段BC上時,如圖1所示,①∠EDC= °;
②探究線段DF與EC的數(shù)量關(guān)系,并證明;
(2)當(dāng)點(diǎn)D運(yùn)動到CB延長線上時,請你畫出圖形,并證明此時DF與EC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com