【題目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn).
(1)求證:△ABD是等邊三角形;
(2)求證:BE=AF.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)連接BD,根據(jù)角平分線(xiàn)的性質(zhì)可得∠BAD=60°,又因?yàn)?/span>AD=AB,即可證△ABD是等邊三角形;(2)由△ABD是等邊三角形,得出BD=AD,∠ABD=∠ADB=60°,證出∠BDE=∠ADF,由ASA證明△BDE≌△ADF,得出BE=AF.
(1)證明:連接BD,
∵∠BAC=120°,AD平分∠BAC
∴∠BAD=∠DAC=×120°=60°,
∵AD=AB,
∴△ABD是等邊三角形;
(2)證明:∵△ABD是等邊三角形,
∴∠ABD=∠ADB=60°,BD=AD,
∵∠DAC=∠BAC=60°,
∴∠DBE=∠DAF,
∵∠EDF=60°,
∴∠BDE=∠ADF,
在△BDE與△ADF中,
,
∴△BDE≌△ADF(ASA),
∴BE=AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AD=2 ,把邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到線(xiàn)段BP,連接AP并延長(zhǎng)交CD于點(diǎn)E,連接PC,則三角形PCE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的個(gè)數(shù)是( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線(xiàn)上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線(xiàn)段B′F的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明到某超市購(gòu)買(mǎi)A、B、C三種商品.其中A、B兩種商品的單價(jià)之和正好等于C商品的單價(jià),小明前兩次購(gòu)買(mǎi)商品的數(shù)量和總費(fèi)用如下表:
商品A的數(shù)量 | 商品B的數(shù)量 | 商品C的數(shù)量 | 總費(fèi)用(元) | |
第一次 | 2 | 3 | 2 | 230 |
第二次 | 1 | 4 | 3 | 290 |
(1)求A、B、C三種商品的單價(jià);
(2)若小明第三次需要購(gòu)置A、B、C三種商品共m個(gè),其中C商品的數(shù)量是A商品的數(shù)量的2倍,恰好花了480元錢(qián).
①求m的最大值;
②若小明在第三次購(gòu)買(mǎi)A,B,C三種商品時(shí)正好遇上“買(mǎi)一送一”活動(dòng),即購(gòu)買(mǎi)一個(gè)C商品即可贈(zèng)送一個(gè)A商品或一個(gè)B商品(優(yōu)先贈(zèng)送A商品),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).
(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說(shuō)明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)O到△ABC的兩邊AB、AC所在直線(xiàn)的距離相等,且OB=OC.
(1)如圖1,若點(diǎn)O在BC上,求證:△ABC是等腰三角形.
(2)如圖2,若點(diǎn)O在△ABC內(nèi)部,求證:AB=AC.
(3)若點(diǎn)O點(diǎn)在△ABC的外部,△ABC是等腰三角形還成立嗎?請(qǐng)畫(huà)圖表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)在,家電商場(chǎng)進(jìn)行促銷(xiāo)活動(dòng),有兩種促銷(xiāo)方式,方式一:出售一種優(yōu)惠購(gòu)物卡(注:此卡只作為購(gòu)物優(yōu)惠憑證不能頂替貨款),花300元買(mǎi)這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購(gòu)物:方式二:若不買(mǎi)卡,則打9.5折銷(xiāo)售
(1)買(mǎi)一臺(tái)標(biāo)價(jià)為3500的冰箱,方式一應(yīng)付_____元,方式二應(yīng)付_____元.
(2)顧客購(gòu)買(mǎi)多少元金額的商品時(shí),買(mǎi)卡與不買(mǎi)卡花錢(qián)相等?如何購(gòu)物合算?(只需給出結(jié)論,不用寫(xiě)計(jì)算過(guò)程)
(3)小張按合算的方案把這臺(tái)冰箱買(mǎi)下,如果家電商場(chǎng)還能盈利 25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn).點(diǎn)第1次向上跳動(dòng)1個(gè)單位至點(diǎn),緊接著第2次向左跳動(dòng)2個(gè)單位至點(diǎn),第3次向上跳動(dòng)1個(gè)單位至點(diǎn),第4次向右跳動(dòng)3個(gè)單位至點(diǎn),第5次又向上跳動(dòng)1個(gè)單位至點(diǎn),第6次向左跳動(dòng)4個(gè)單位至點(diǎn),……,照此規(guī)律,點(diǎn)第2020次跳動(dòng)至點(diǎn)的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com