如圖2,若P為∠AOB內(nèi)一點(diǎn),分別作出P點(diǎn)關(guān)于OA、OB的對(duì)稱點(diǎn)P1P2,連接P1P2交OA于M,交OB于N,P1P2=15,則△PMN的周長是________。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在?ABCD中,AO⊥BC,垂足為O,已知∠ABC=60°,BO=2,AO=2
3

(1)求線段AB的長;
(2)如圖2,點(diǎn)E為線段AB的中點(diǎn),過點(diǎn)E的直線FG與CB的延長線交于點(diǎn)F,與射線AD交于點(diǎn)G,連接OE,以O(shè)E所在直線為對(duì)稱軸,△OEF經(jīng)軸對(duì)稱變換后得到△OEF′,記直線EF′與射線AD的交點(diǎn)為H.
①當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時(shí),求證:△AEG∽△AHE;
②若HG=6,求AG的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•如東縣模擬)以平面上一點(diǎn)O為直角頂點(diǎn),分別畫出兩個(gè)直角三角形,記作△AOB和△COD,其中∠ABO=∠DCO=30°.
(1)點(diǎn)E、F、M分別是AC、CD、DB的中點(diǎn),連接FM、EM.
①如圖1,當(dāng)點(diǎn)D、C分別在AO、BO的延長線上時(shí),
FM
EM
=
3
2
3
2

②如圖2,將圖1中的△AOB繞點(diǎn)O沿順時(shí)針方向旋轉(zhuǎn)α角(0°<α<60°),其他條件不變,判斷
FM
EM
的值是否發(fā)生變化,并對(duì)你的結(jié)論進(jìn)行證明;
(2)如圖3,若BO=3
3
,點(diǎn)N在線段OD上,且NO=2.點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn),在將△AOB繞點(diǎn)O旋轉(zhuǎn)的過程中,線段PN長度的最小值為
3
2
3
-2
3
2
3
-2
,最大值為
3
3
+2
3
3
+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海陵區(qū)模擬)已知直線y=-
3
4
x+6
與x軸交于點(diǎn)B,與y軸交于點(diǎn)A.
(1)⊙P經(jīng)過點(diǎn)O、A、B,試求點(diǎn)P的坐標(biāo);
(2)如圖2,點(diǎn)Q為線段AB上一點(diǎn),QM⊥OA、QN⊥OB,連結(jié)MN,試求△MON面積的最大值;
(3)在∠OAB內(nèi)是否存在點(diǎn)E,使得點(diǎn)E到射線AO和AB的距離相等,且這個(gè)距離等于點(diǎn)E到x軸的距離的
2
3
?若存在,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),⊙M經(jīng)過O、A兩點(diǎn),交x軸于點(diǎn)N.
(1)如圖1,若ON=3,設(shè)△AON的內(nèi)心為I,過I作IB⊥AN于B,則AB-BN的值為
1
1

(2)如圖2,若∠NAO=30°,在E在⊙M上,且△AOE為等邊三角形,P為劣弧AE上一點(diǎn),且∠EOP=45°,求OP-AP的值;
(3)如圖3,在(2)的條件下,將一塊含30°角的三角板的60°角的頂點(diǎn)置于N點(diǎn),角的兩邊分別交AE、AO與G、H.當(dāng)此三角板任意旋轉(zhuǎn)時(shí),△AGH的周長是否變化?若變化,請(qǐng)說明理由,若不變,請(qǐng)證明并求出值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,直線l1:y=2x與直線l2:y=-3x+6相交于點(diǎn)A,直線l2與x軸交于點(diǎn)B,平行于x軸的直線y=n分別交直線l1、直線l2于P、Q兩點(diǎn)(點(diǎn)P在Q的左側(cè))
(1)點(diǎn)A的坐標(biāo)為
6
5
,
12
5
6
5
,
12
5
;
(2)如圖1,若點(diǎn)P在線段AO上,在x軸上是否存在一點(diǎn)H,使得△PQH為等腰直角三角形,若存在,求出點(diǎn)H的坐標(biāo);若不存在,說明理由;
(3)如圖2.若以點(diǎn)P為直角頂點(diǎn),向下作等腰直角△PQF,設(shè)△PQF與△AOB重疊部分的面積為S,求S與n的函數(shù)關(guān)系式;并注明n的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案