如圖,△ABC中,CE平分∠ACB交AB于E,過E作EF∥BC交∠ACD的平分線于F、EF交AC于M,若CM=5,則CE2+CF2=
100
100
分析:根據(jù)角平分線的定義可以證明出△CEF是直角三角形,再根據(jù)平行線的性質(zhì)以及角平分線的定義證明得到EM=CM=MF然后求出EF的長(zhǎng)度,然后利用勾股定理列式計(jì)算即可求解.
解答:解:∵CE平分∠ACB交AB于E,CF平分∠ACD,
∴∠1=∠2=
1
2
∠ACB,∠3=∠4=
1
2
∠ACD,
∴∠2+∠3=
1
2
(∠ACB+∠ACD)=90°,
∴△CEF是直角三角形,
∵EF∥BC,
∴∠1=∠5,∠4=∠F,
∴∠2=∠5,∠3=∠F,
∴EM=CM,CM=MF,
∵CM=5,
∴EF=5+5=10,
在Rt△CEF中,CE2+CF2=EF2=102=100.
故答案為:100.
點(diǎn)評(píng):本題考查了直角三角形的性質(zhì),平行線的性質(zhì),以及角平分線的定義,證明出△CEF是直角三角形是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案