精英家教網 > 初中數學 > 題目詳情
讀一讀:式子“1+2+3+4+5+…+100”表示從1開始的100個連續(xù)自然數的和.由于上述式子比較長,書寫也不方便,為了簡便起見,我們可將“1+2+3+4+5+…+100”表示為
100
n=1
n
,這里“
 
 
”是求和符號.例如:“1+3+5+7+9+…+99”(即從1開始的100以內的連續(xù)奇數的和)可表示為
50
n=1
(2n-1)
;又如“13+23+33+43+53+63+73+83+93+103”可表示為
10
n=1
n3
.同學們,通過對以上材料的閱讀,請解答下列問題:
①2+4+6+8+10+…+100(即從2開始的100以內的連續(xù)偶數的和)用求和符號可表示為
 
;
②計算:
5
n=1
(n2-1)
=
 
(填寫最后的計算結果).
分析:(1)根據題意中,關于求和符號“
 
 
”的介紹,可得答案,注意上下標的意義;
(2)根據題意計算
5
n=1
(n2-1)
=(12-1)+(22-1)+(32-1)+(42-1)+(52-1)=50.
解答:答案(1)
50
n=1
2n
;
(2)原式=(12-1)+(22-1)+(32-1)+(42-1)+(52-1)=50.
點評:本題考查學生分析數據,總結、歸納數據規(guī)律的能力,要求學生要有一定的解題技巧.根據題中所給的材料獲取所需的信息和解題方法是需要掌握的基本技能.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(1)解不等式:
x-3
2
-1>
x-5
3

(2)做一做:
精英家教網
用四塊如圖1的瓷磚拼成一個正方形,使拼成的圖案成軸對稱圖形,請你在圖2,圖3,圖4中各畫出一種拼法(要求三種拼法各不相同,所畫圖案中的陰影部分用斜線表示)
(3)讀一讀:
式子“1+2+3+4+5+…+100”表示1開始的100個連續(xù)自然數的和.
由于上述式子比較長,書寫也不方便,為了簡便起見,我們可以將
“1+2+3+4+5+…+100”表示為
100
n=1
n
,這里“Σ”是求和符號.
例如:“1+3+5+7+9+…+99”(即從1開始的100以內的連續(xù)奇數的和)可表示為
50
n=1
(2n-1)
;又如:“13+23+33+43+53+63+73+83+93+103”可表示為
10
n=1
n3

同學們,通過對以上材料的閱讀,請解答下列問題:
<1>2+4+6+8+10+…+100(即從2開始的100以內的連續(xù)偶數的和)用求和符號可表示為
 

<2>計算:
5
n=1
(n2-1)=
 
(填寫最后的計算結果).

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•臨沂)讀一讀:式子“1+2+3+4+…+100”表示從1開始的100個連續(xù)自然數的和,由于式子比較長,書寫不方便,為了簡便起見,我們將其表示為
100
n=1
n,這里“∑”是求和符號,通過對以上材料的閱讀,計算
2012
n=1
1
n(n+1)
=
2012
2013
2012
2013

查看答案和解析>>

科目:初中數學 來源: 題型:

讀一讀:式子“1+2+3+4+…+100”表示從1開始的100個連續(xù)自然數的和,由于式子比較長,書寫不方便,為了簡便起見,我們將其表示為
100
n=1
n
,即
100
n=1
n
=1+2+3+4+…+100.這里“∑”是求和符號.通過對以上材料的閱讀:
(1)計算:
50
n=1
n
=
1275
1275

(2)計算:
1
n
-
1
n+1
=
1
n(n+1)
1
n(n+1)
;運用這個式子,計算
2012
n=1
1
n(n+1)

查看答案和解析>>

科目:初中數學 來源: 題型:

24.讀一讀,式子“1+2+3+4+5+…+100”表示從1開始的100個連續(xù)自然數的和.由于上述式子比較長,書寫也不方便,為了簡便起見,我們可以將“1+2+3+4+5+…+100”表示為
100
n=1
n,這里“∑”是求和符號.例如:1+3+5+7+9+…+99,即從1開始的100以內的連續(xù)奇數的和,可表示為
100
n=1
(2n-1),又知13+23+33+43+53+63+73+83+93+103可表示為
10
n=1
n3.通過對以上材料的閱讀,請解答下列問題.
(1)2+4+6+8+10+…+100(即從2開始的100以內的連續(xù)偶數的和)用求和符合可表示為
50
n=1
2n
50
n=1
2n

(2)1+
1
2
+
1
3
+…+
1
10
用求和符號可表示為
10
n=1
1
n
10
n=1
1
n

(3)計算
6
n=1
(n2-1)=
85
85
.(填寫最后的計算結果)

查看答案和解析>>

同步練習冊答案