【題目】某地一路段修建,甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做5天,再由甲、乙兩隊(duì)合作9天,共完成這項(xiàng)工程的三分之一.

(1)求甲、乙兩隊(duì)合作完成這項(xiàng)工程需要多少天?

(2)若甲隊(duì)的工作效率提高20%,乙隊(duì)工作效率提高50%,甲隊(duì)施工1天需付工程款4萬(wàn)元,乙隊(duì)施工一天需付工程款2.5萬(wàn)元,現(xiàn)由甲乙兩隊(duì)合作若干天后,再由乙隊(duì)完成剩余部分,在完成此項(xiàng)工程的工程款不超過(guò)190萬(wàn)元的條件下要求盡早完成此項(xiàng)工程,則甲、乙兩隊(duì)至多要合作多少天?

【答案】(1)甲、乙兩隊(duì)合作完成這項(xiàng)工程需要36;(2)甲、乙兩隊(duì)至多要合作7

【解析】

(1)設(shè)甲、乙兩隊(duì)合作完成這項(xiàng)工程需要x天,根據(jù)條件:甲隊(duì)先做5天,再由甲、乙合作9天,共完成總工作量的,列方程求解即可;

(2)設(shè)甲、乙兩隊(duì)最多合作元天,先求出甲、乙兩隊(duì)合作一天完成工程的多少,再根據(jù)完成此項(xiàng)工程的工程款不超過(guò)190萬(wàn)元,列出不等式,求解即可得出答案.

(1)設(shè)甲、乙兩隊(duì)合作完成這項(xiàng)工程需要x

根據(jù)題意得,

解得 x=36,

經(jīng)檢驗(yàn)x=36是分式方程的解,

答:甲、乙兩隊(duì)合作完成這項(xiàng)工程需要36天,

2

設(shè)甲、乙需要合作y天,根據(jù)題意得,

解得y≤7

答:甲、乙兩隊(duì)至多要合作7天.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)C落到AB邊上的E點(diǎn)處,折痕為如圖乙再將紙片沿過(guò)點(diǎn)E的直線折疊,點(diǎn)A恰好與點(diǎn)D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖1P是菱形ABCD對(duì)角線AC上的一點(diǎn),點(diǎn)EBC的延長(zhǎng)線上,且PE=PB

1)求證:PD=PE;

2)求證:∠DPE=ABC;

3)如圖2,當(dāng)四邊形ABCD為正方形時(shí),連接DE,試探究線段DE與線段BP的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 閱讀下面的材料,解答后面的問(wèn)題

材料:“解方程x4-3x2+2=0”

解:設(shè)x2=y,原方程變?yōu)?/span>y2-3y+2=0,(y-1)(y-2=0,得y=1y=2

當(dāng)y=1時(shí),即x2=1,解得x=±1

當(dāng)y=2時(shí),即x2=2,解得x=±

綜上所述,原方程的解為x1=1,x2=-1x3=x4=-

問(wèn)題:(1)上述解答過(guò)程采用的數(shù)學(xué)思想方法是______

A.加減消元法 B.代入消元法 C.換元法 D.待定系數(shù)法

2)采用類似的方法解方程:(x2-2x2-x2+2x-6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某中學(xué)校園內(nèi)新建的一座騰飛雕塑,數(shù)學(xué)老師給八年級(jí)的兩個(gè)數(shù)學(xué)社團(tuán)布置了驗(yàn)證雕塑底座正面的邊AB和邊CD是否分別垂直于底邊BC的作業(yè).老師給巧手社團(tuán)配備的工具只有卷尺,給敏思社團(tuán)只配備了一把20cm長(zhǎng)的刻度尺他們能完成任務(wù)嗎?如果能,請(qǐng)給出測(cè)量方案;如果不能需要增加哪些測(cè)量工具?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2axx軸相交于O、A兩點(diǎn),OA=4,點(diǎn)D為拋物線的頂點(diǎn),并且直線y=kx+b與該拋物線相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,B點(diǎn)的橫坐標(biāo)是﹣1.

(1)求k,a,b的值;

(2)若P是直線AB上方拋物線上的一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)是t,PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;

(3)在(2)的條件下,當(dāng)PBCD時(shí),點(diǎn)Q是直線AB上一點(diǎn),若∠BPQ+CBO=180°,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某人為了測(cè)量小山頂上的塔ED的高,他在山下的點(diǎn)A處測(cè)得塔尖點(diǎn)D的仰角為45°,再沿AC方向前進(jìn)60 m到達(dá)山腳點(diǎn)B,測(cè)得塔尖點(diǎn)D的仰角為60°,塔底點(diǎn)E的仰角為30°,求塔ED的高度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+c過(guò)點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對(duì)稱軸是x=﹣3,請(qǐng)解答下列問(wèn)題:

(1)求拋物線的解析式.

(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求△BCD的面積.注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=﹣.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品零售店為食品廠代銷一種面包,未售出的面包可以退回廠家.經(jīng)統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的銷售單價(jià)為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上.單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè)面包.設(shè)這種面包的銷售單價(jià)為x角(每個(gè)面包的成本是5角).零售店每天銷售這種面包的利潤(rùn)為y角.

(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤(rùn)與賣出的面包個(gè)數(shù);

(2)求xy之間的函數(shù)關(guān)系式:

(3)當(dāng)這種面包的銷售單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案