【題目】A、BC三地在同一直線上,甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)2小時,甲車到達B地后立即調(diào)頭,并將速度提高10%后與乙車同向行駛,乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,經(jīng)過一段時間后兩車同時到達C地,設(shè)兩車之間的距離為y(千米),甲行駛的時間x(小時).yx的關(guān)系如圖所示,則B、C兩地相距_____千米.

【答案】1320

【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),可以求得甲乙兩車的速度,再根據(jù)“路程=速度×?xí)r間”,即可解答本題.

解:設(shè)甲車的速度為a千米/小時,乙車的速度為b千米/小時,

,解得

∴A、B兩地的距離為:80×9720千米,

設(shè)乙車從B地到C地用的時間為x小時,

60x801+10%)(x+29),

解得,x22,

BC兩地相距:60×221320(千米)

故答案為:1320

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與軸的正半軸交于點,與軸交于點,的面積為2,動點從點出發(fā),以每秒1個單位長度的速度在射線上運動,動點出發(fā),沿軸的正半軸與點同時以相同的速度運動,過軸交直線.

(1)求直線的解析式.

(2)當點在線段上運動時,設(shè)的面積為,點運動的時間為秒,求的函數(shù)關(guān)系式(直接寫出自變量的取值范圍).

(3)過點軸交直線,在運動過程中(不與點重合),是否存在某一時刻(),使是等腰三角形?若存在,求出時間的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點,與軸交于點、,點坐標為

求該拋物線的解析式;

拋物線的頂點為,在軸上找一點,使最小,并求出點的坐標;

是線段上的動點,過點,交于點,連接.當的面積最大時,求點的坐標;

若平行于軸的動直線與該拋物線交于點,與直線交于點,點的坐標為.問:是否存在這樣的直線,使得是等腰三角形?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+yx相交于點A,與x軸交于點B.

(1)填空:A的坐標是_______,B的坐標是___________;

(2)直線y=﹣x+上有點P(m,n),且點P在第四象限,設(shè)△AOP的面積為S,請求出Sm的函數(shù)關(guān)系式;

(3)在直線OA上,是否存在一點D,使得△DOB是等腰三角形?如果存在,試求出所有符合條件的點D的坐標,如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖 1,△ABC 和△ADE 都是等腰直角三角形,∠BAC 和∠DAE 是直角,連接BD,CE 相交于點 F,則∠BFC= °

2)如圖 2,△ABC 和△ADE 都是等邊三角形,連接 BD,CE 相交于點 F,則∠BFC= °

3)如圖 3,△ABC 和△ADE 都是等腰三角形,AB=AC,AD=AE,且∠BAC=DAE,連接 BD,CE相交于點 F,請猜想∠BFC 與∠BAC 有怎樣的大小關(guān)系?請證明你的猜想

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:把形如的二次三項式(或其中一部分)配成完全平方的形式,叫做配方法.配方的基本形式是完全平方公式的逆運用,即

例如:________

________

________.

以上是的三種不同形式的配方(即“余項”分別是常數(shù)、一次項、二次項–見橫線上的部分).根據(jù)閱讀材料解決以下問題:

仿照上面的例子,寫出三種不同形式的配方;

配方(至少寫出兩種形式);

已知,求、、的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,分別是線段,上的點,連接,使四邊形為正方形,若點上的動點,連接,將矩形沿折疊使得點落在正方形的對角線所在的直線上,對應(yīng)點為,則線段的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明去離家2.4 km的體育館看球賽,進場時,發(fā)現(xiàn)門票還放在家中,此時離比賽還有45 min,于是他立即步行(勻速)回家取票,在家取票用時2 min,取到票后,他馬上騎自行車(勻速)趕往體育館.已知小明騎自行車從家趕往體育館比從體育館步行回家所用時間少20 min,騎自行車的速度是步行速度的3倍.

(1)小明步行的速度是多少?

(2)小明能否在球賽開始前趕到體育館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+2與x軸交于A,B兩點,與y軸交于C點,且點A的坐標為(1,0).

(1)求拋物線的解析式及頂點D的坐標;

(2)判斷ABC的形狀,并證明你的結(jié)論;

(3)點M是拋物線對稱軸上的一個動點,當ACM的周長最小時,求點M的坐標.

查看答案和解析>>

同步練習(xí)冊答案