【題目】如圖,拋物線y=﹣x2+bx+2與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且點(diǎn)A的坐標(biāo)為(1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)判斷ABC的形狀,并證明你的結(jié)論;

(3)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)ACM的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo).

【答案】(1)頂點(diǎn)D的坐標(biāo)為(﹣,);(2)△ABC是直角三角形(3)當(dāng)M的坐標(biāo)為(﹣,

【解析】分析:(1)、將點(diǎn)A的坐標(biāo)代入函數(shù)解析式求出b的值,然后將二次函數(shù)進(jìn)行配方從而得出頂點(diǎn)坐標(biāo);(2)、根據(jù)二次函數(shù)的解析式分別得出點(diǎn)A、B、C的坐標(biāo),然后分別求出AC、BCAB的長(zhǎng)度,然后根據(jù)勾股定理的逆定理得出答案;(3)、由拋物線的性質(zhì)可知,點(diǎn)A與點(diǎn)B關(guān)于對(duì)稱軸對(duì)稱,則BC與對(duì)稱軸的交點(diǎn)就是點(diǎn)M,根據(jù)一次函數(shù)的交點(diǎn)求法得出點(diǎn)M的坐標(biāo).

詳解:(1)、∵點(diǎn)A(1,0)在拋物線y=﹣x2+bx+2上,∴﹣+b+2=0,解得,b=﹣

拋物線的解析式為y=﹣x2x+2,y=﹣x2x+2=﹣(x+2+

則頂點(diǎn)D的坐標(biāo)為(﹣,);

(2)、△ABC是直角三角形,

證明:點(diǎn)C的坐標(biāo)為(0,2),即OC=2, x2x+2=0, 解得,x1=﹣4,x2=1,

則點(diǎn)B的坐標(biāo)為(﹣4,0),即OB=4,OA=1,OB=4, ∴AB=5,

由勾股定理得,AC=,BC=2, AC2+BC2=25=AB2, ∴△ABC是直角三角形;

(3)、由拋物線的性質(zhì)可知,點(diǎn)A與點(diǎn)B關(guān)于對(duì)稱軸對(duì)稱,

連接BC交對(duì)稱軸于M,此時(shí)ACM的周長(zhǎng)最小, 設(shè)直線BC的解析式為:y=kx+b,

由題意得,解得,則直線BC的解析式為:y=x+2,

當(dāng)x=﹣時(shí),y=, ∴當(dāng)M的坐標(biāo)為(﹣).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、BC三地在同一直線上,甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)2小時(shí),甲車到達(dá)B地后立即調(diào)頭,并將速度提高10%后與乙車同向行駛,乙車到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,經(jīng)過(guò)一段時(shí)間后兩車同時(shí)到達(dá)C地,設(shè)兩車之間的距離為y(千米),甲行駛的時(shí)間x(小時(shí)).yx的關(guān)系如圖所示,則B、C兩地相距_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P的角平分線OC上一點(diǎn),PNOB于點(diǎn)N,點(diǎn)M是線段ON上一點(diǎn),已知OM=3,ON=4,點(diǎn)DOA上一點(diǎn),若滿足PD=PM,OD的長(zhǎng)度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點(diǎn)P從點(diǎn)B出發(fā),以cm/s的速度沿BC方向運(yùn)動(dòng)到點(diǎn)C停止,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以1cm/s的速度沿BA-AC方向運(yùn)動(dòng)到點(diǎn)C停止,若△BPQ的面積為y(cm2),運(yùn)動(dòng)時(shí)間為x(s),求在這一運(yùn)動(dòng)過(guò)程中yx之間函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個(gè)箏形,其中,詹姆斯在探究箏形的性質(zhì)時(shí),得到如下結(jié)論:
;;四邊形ABCD的面積其中正確的結(jié)論有  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9分)某批發(fā)商以每件50元的價(jià)格購(gòu)進(jìn)800T恤,第一個(gè)月以單價(jià)80元銷售,售出了200件;第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,批發(fā)商為增加銷售量,決定降價(jià)銷售,根據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)應(yīng)高于購(gòu)進(jìn)的價(jià)格;第二個(gè)月結(jié)束后,批發(fā)商將對(duì)剩余的T恤一次性清倉(cāng)銷售,清倉(cāng)是單價(jià)為40元,設(shè)第二個(gè)月單價(jià)降低元.

1)填表:(不需化簡(jiǎn))

2)如果批發(fā)商希望通過(guò)銷售這批T恤獲利9000元,那么第二個(gè)月的單價(jià)應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】貴州省是我國(guó)首個(gè)大數(shù)據(jù)綜合試驗(yàn)區(qū),大數(shù)據(jù)在推動(dòng)經(jīng)濟(jì)發(fā)展、改善公共服務(wù)等方面日益顯示出巨大的價(jià)值,為創(chuàng)建大數(shù)據(jù)應(yīng)用示范城市,我市某機(jī)構(gòu)針對(duì)市民最關(guān)心的四類生活信息進(jìn)行了民意調(diào)查(被調(diào)查者每人限選一項(xiàng)),下面是部分四類生活信息關(guān)注度統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:

(1)本次參與調(diào)查的人數(shù)有 人;

(2)關(guān)注城市醫(yī)療信息的有 人,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中,D部分的圓心角是 度;

(4)說(shuō)一條你從統(tǒng)計(jì)圖中獲取的信息.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O的半徑為2,弦BC的長(zhǎng)為,點(diǎn)A為弦BC所對(duì)優(yōu)弧上任意一點(diǎn)(B,C兩點(diǎn)除外).

1)求BAC的度數(shù);

2)求ABC面積的最大值.

(參考數(shù)據(jù): ,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,DBC邊上一個(gè)動(dòng)點(diǎn)(DB、C均不重合),AD=AE,∠DAE=60°,連接CE

1)求證:ABD≌△ACE;

2)求證:CE平分∠ACF;

3)若AB=2,當(dāng)四邊形ADCE的周長(zhǎng)取最小值時(shí),求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案