【題目】如圖1,等腰RtABC中,∠A90°,點(diǎn)D,E分別在邊AB,AC上,ADAE,連接DC,點(diǎn)M,PN分別為DE,DC,BC的中點(diǎn).

1)觀察猜想:圖1中,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   ;

2)探究證明:把ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

3)拓展延伸:把ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD8,AB20,請(qǐng)直接寫出PMN面積的最大值.

【答案】(1)PM=PN,PM⊥PN;(2)PMN是等腰直角三角形,理由見解析;(398

【解析】

1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PMCE得出∠DPM=DCA,最后用互余即可得出結(jié)論;

2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;

3)先判斷出BD最大時(shí),△PMN的面積最大,而BD最大是AB+AD=14,即可得出結(jié)論.

1點(diǎn)P,NBCCD的中點(diǎn),

PNBDPNBD,

點(diǎn)P,MCDDE的中點(diǎn),

PMCEPMCE,

ABAC,ADAE

BDCE,

PMPN

PNBD,

∴∠DPNADC,

PMCE

∴∠DPMDCA,

∵∠BAC90°

∴∠ADC+∠ACD90°,

∴∠MPNDPM+∠DPNDCA+∠ADC90°,

PMPN,

故答案為:PMPN,PMPN

2PMN是等腰直角三角形.

由旋轉(zhuǎn)知,BADCAE,

ABAC,ADAE,

∴△ABD≌△ACESAS),

∴∠ABDACEBDCE,

利用三角形的中位線得,PNBD,PMCE

PMPN,

∴△PMN是等腰三角形,

同(1)的方法得,PMCE,

∴∠DPMDCE

同(1)的方法得,PNBD

∴∠PNCDBC,

∵∠DPNDCB+∠PNCDCB+∠DBC,

∴∠MPNDPM+∠DPNDCE+∠DCB+∠DBC

BCE+∠DBCACB+∠ACE+∠DBC

ACB+∠ABD+∠DBCACB+∠ABC,

∵∠BAC90°

∴∠ACB+∠ABC90°,

∴∠MPN90°

∴△PMN是等腰直角三角形;

3)由(2)知,PMN是等腰直角三角形,PMPNBD,

PM最大時(shí),PMN面積最大,

點(diǎn)DBA的延長(zhǎng)線上,

BDAB+AD28,

PM14,

SPMN最大PM214298

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,ACBDCE均為等邊三角形,點(diǎn)A,DE在同一直線上,連接BE,則AEB的度數(shù)為__________.

(2)如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,點(diǎn)AD,E在同一直線上,CMDCEDE邊上的高,連接BE.求AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn).

(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DEDF,求證:BE=AF;

(2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DEDF,那么BE=AF嗎?請(qǐng)利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠BAC90°,ABAC.點(diǎn)D從點(diǎn)B出發(fā)沿射線BC移動(dòng),以AD為邊在AB的右側(cè)作ADE,且∠DAE90°ADAE.連接CE

1)如圖1,若點(diǎn)DBC邊上,則∠BCE  °;

2)如圖2,若點(diǎn)DBC的延長(zhǎng)線上運(yùn)動(dòng).

①∠BCE的度數(shù)是否發(fā)生變化?請(qǐng)說明理由;

②若BC3,CD6,則ADE的面積為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)利用直尺完成下列問題

1)如圖(1)示,利用網(wǎng)格畫圖:

①在BC上找一點(diǎn)P,使得PABAC的距離相等;

②在射線AP上找一點(diǎn)Q,使QBQC

2)如圖(2)示,點(diǎn)A,B,C都在方格紙的格點(diǎn)上.請(qǐng)你再找一個(gè)格點(diǎn)D,使點(diǎn)A,BC,D組成一個(gè)軸對(duì)稱圖形,請(qǐng)?jiān)趫D中標(biāo)出滿足條件的所有點(diǎn)D的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC15,且ABC的面積為90,D是線段AB上的動(dòng)點(diǎn)(包含端點(diǎn)),若線段CD的長(zhǎng)為正整數(shù),則點(diǎn)D的個(gè)數(shù)共有( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC△ECD都是等邊三角形,BC、D三點(diǎn)在一條直線上,ADBE相交于點(diǎn)O,ADCE相交于點(diǎn)F,ACBE相交于點(diǎn)G

1△BCE△ACD全等嗎?請(qǐng)說明理由.

2)求∠BOD度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(k>0,x>0)的圖象經(jīng)過菱形OACD的頂點(diǎn)D和邊AC的中點(diǎn)E,若菱形OACD的邊長(zhǎng)為3,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘船在A處望見燈塔E在北偏東60°方向上,此船沿正東方向航行60海里后到達(dá)B處,在B處測(cè)得燈塔E在北偏東15°方向上.

(1)求∠AEB的度數(shù);

(2)①求A處到燈塔E的距離AE;

②已知燈塔E周圍40海里內(nèi)有暗礁,問:此船繼續(xù)向東方向航行,有無觸礁危險(xiǎn)?(參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案